10.1002/anie.201712726
Angewandte Chemie International Edition
COMMUNICATION
H. Wong, Science 2001, 291, 2344. c) C. R. Bertozzi, L. L. Kiessling,
Science 2001, 291, 2357. d) A. Helenius, M. Aebi, Science 2001, 291,
2364.
(OTf‒) and tetrafluoroborate (BF4‒) could be synthesized in acceptable
yields,[25] due to the poor nucleophilicity of N-aryl-2-iodobenzimidazole
precursors.
[4]
[5]
For recent reviews see: a) S. W. Lam, H. J. Guchelaar, E. Boven,
Cancer Treat. Rev. 2016, 50, 9. b) S. V. Moradi, W. M. Hussein, P.
Varamini, P. Simerska, I. Toth, Chem. Sci. 2016, 7, 2492.
[15] For reports on other type of XB-donor-mediated or catalyzed reactions,
see: a) A. Bruckman, M. A. Pene, C. Bolm, Synlett 2008, 6, 900. b) F.
Kniep, S. H. Jungbauer, Q. Zhang, S. M. Walter, S. Schindler, I.
Schnapperelle, E. Herdweck, S. M. Huber, Angew. Chem. Int. Ed. 2013,
52, 7028. c) N. Tsuji, Y. Kobayashi, Y. Takemoto, Chem. Commun.
2014, 50, 13691. d) A. Matsuzawa, S. Takeuchi, K. Sugita, Chem.
Asian J. 2016, 11, 2863.
For a review see: a) H. Herzner, T. Reipen, M. Schultz, H. Kunz, Chem
Rev. 2000, 100, 4495. For selected recent examples see: b) G, J.
Mercer, J. Yang, M. J. McKay, H. M. Nguyen, J. Am. Chem. Soc. 2008,
130, 11210. c) B. M. Trost, E. U. Sharif, J. J. Cregg, Chem. Sci., 2017,
8, 770.
[16] For other uses of XB in organic reactions, see: a) V. N. G. Lindsay, W.
Lin, A. B. Charette, J. Am. Chem. Soc. 2009, 131, 16383. b) S.
Dordonne, B. Crousse, D. Bonnet-Delpon, J. Legros, Chem. Commun.
2011, 47, 5855. c) H. Nakatsuji, Y. Sawamura, A. Sakakura, K. Ishihara,
Angew. Chem. Int. Ed. 2014, 53, 6974. d) L. Zong, X. Ban, C. W. Kee,
C.-H. Tan, Angew. Chem. Int. Ed. 2014, 53, 11849. e) F. Sladojevich, E.
McNeill, J. Bçrgel, S.-L. Zheng, T. Ritter, Angew. Chem. Int. Ed. 2015,
54, 3712.
[6]
For a selected example via glycosyl azides see: a) J. Zheng, K. B.
Urkalan, S. B. Herzon, Angew. Chem. Int. Ed. 2013, 52, 6068. For
selected examples via reducing sugars see: b) S. T. Cohen-Anisfeld, P.
T. Lansbury, Jr., J. Am. Chem. Soc. 1993, 115, 10531. c) P. Wang, X.
Li, J. Zhu, J. Chen, Y. Yuan, X. Wu, S. J. Danishefsky, J. Am. Chem.
Soc. 2011, 133, 1597, and references cited therein.
[7]
[8]
a) D. Kahne, S. Walker, Y. Cheng, D. van Engen, J. Am. Chem. Soc.
1989, 111, 6881. b) B. A. Garcia, D. Y. Gin, J. Am. Chem. Soc. 2000,
122, 4269.
[17] For selected recent reviews on halogen bonding, see: a) T. M. Beale, M.
G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc. Rev. 2013, 42,
1667. b) L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B.
R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118. c) G. Cavallo, P.
Metrangolo, R. Milani, T. Pilati, G. Priimagi, G. Resnati, G. Terraneo,
Chem. Rev. 2016, 116, 2478. d) D. Bulfield, S. M. Huber, Chem. Eur. J.
2016, 22, 14434.
a) H. Tanaka, Y. Iwata, D. Takahashi, M. Adachi, T. Takahashi, J. Am.
Chem. Soc. 2005, 127, 1630. b) K. Tanaka, T. Miyagawa, K. Fukase,
Synlett 2009, 1571. c) Y. Li, X. Yang, Y. Liu, C. Zhu, Y. Yang, B. Yu,
Chem. Eur. J. 2010, 16, 1871. d) H. A. V. Kistemaker, G. J. van der
Heden van Noort, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov,
Org. Lett. 2013, 15, 2306.
[18]
a) G. Jakab, A. Hosseini, H. Hausmann, P. R. Schreiner, Synthesis
2013, 45, 1635. b) C. C. Robertson, R. N. Perutz, L. Brammer, C. A.
Hunter, Chem. Sci. 2014, 5, 4179. c) Y. Park, C. S. Schindler, E. N.
Jacobsen, J. Am. Chem. Soc. 2016, 138, 14848. d) M. Kaasik, S.
Kaabel, K. Kriis, I. Jӓrving, R. Aav, K. Rissanen, T. Kanger, Chem. Eur.
J. 2017, 23, 7337.
[9]
a) A. V. Demchenko, Handbook of Chemical Glycosylation; Wiley-VCH:
Weinheim, 2008. For a recent review on organocatalytic glycosylations,
see: b) R. Williams, M. C. Galan, Eur. J. Org. Chem. 2017, 6247.
[10] a) R. R. Schmidt, K. H. Jung, In Carbohydrates in Chemistry and Biology
Part 1: Chemistry of Saccharides; B. Ernst, G. W. Hart, P. Sinay, Eds.;
Wiley−VCH:ꢀ Weinheim, Germany, 2000; Vol. 1, pp 5−59. b) F. Kong,
Carbohydr. Res. 2007, 342, 345. c) Y. Li, H. Mo, G. Lian, B. Yu,
Carbohydr. Res. 2012, 363, 14.
[19] For reviews see: a) T. J. Auvil, A. G. Schafer, A. E. Mattson, Eur. J. Org.
Chem. 2014, 2633. b) L. Hong, W. Sun, D. Yang, G. Li, R. Wang,
Chem. Rev. 2016, 116, 4006.
[11] For recent reports on glycosylation utilizing thiourea catalysts see: a) Y.
Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R.
Schmidt, Angew. Chem. Int. Ed. 2013, 52, 10089. b) T. Kimura, T. Eto,
D. Takahashi, K. Toshima, Org. Lett. 2016, 18, 3190. c) Y. Hashimoto,
S. Tanikawa, R. Saito, K. Sasaki, J. Am. Chem. Soc. 2016, 138, 14840.
d) Y. Park, K. C. Harper, N. Kuhl, E. E. Kwan, R. Y. Liu, E. N. Jacobsen,
Science 2017, 355, 162.
[20]
Activation of LG by revitalized amide cannot be ruled out. For an N-
glycosylation via the deprotonation of activated amide, see: a) B.
Imperiali, K. L. Shannon, M. Unno, K. W. Rickert, J. Am. Chem. Soc.
1992, 114, 7944. For an O-glycosylaton via the activation of LG by a
revitalized alcohol, see: b) P. Peng, R. R. Schmidt, J. Am. Chem. Soc.
2015, 137, 12653. c) P. Peng, R. R. Schmidt, Acc. Chem. Res., 2017,
50, 1171.
[12] a) P. R. Schreiner, A. Wittkopp, Org. Lett., 2002, 4, 217. b) X. Li, H.
Deng, B. Zhang, J. Y. Li, L. Zhang, S. Z. Luo, J.-P. Cheng, Chem. ‒Eur.
J. 2010, 16, 450. c) G. Jakab, C. Tancon, Z. G. Zhang, K. M. Lippert, P.
R. Schreiner, Org. Lett. 2012, 14, 1724.
[21] Only one paper reported its formation as byproduct, see: Y. Tarumi, Y.
Takebayashi, T. Atsumi, J. Heterocyclic Chem. 1984, 21, 849.
[22]
[23]
a) I. Chiu-Machado, J. C. Castro-Palomino, O. Madrazo-Alonso, C.
Lopetegui-Palacios, V. Verez-Bencomo, J. Carbohydr. Chem. 1995, 14,
551. b) S. Loscher, R. Schobert, Chem. Eur. J. 2013, 19, 10619.
a) J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008,
130, 14416. b) A. Rostami, A. Colin, X. Y. Li, M. G. Chudzinski, A. J.
Lough, M. S. Taylor, J. Org. Chem. 2010, 75, 3983. c) X. Ni, X. Li, Z.
Wang, J.-P. Cheng, Org. Lett. 2014, 16, 1786.
[13] a) M. Kotke, P. R. Schreiner, Synthesis 2007, 779. b) E. I. Balmond, D.
M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed. 2012,
51, 9152. c) A. Madarꢁsz, Z. Dꢂsa, S. Varga, T. Soꢂs, A. Csꢁmpai, I.
Pꢁpai, ACS Catal. 2016, 6, 4379.
[14] a) S. M. Walter, F. Kniep, E. Herdtweck, S. M. Huber, Angew. Chem. Int.
Ed. 2011, 50, 7187. b) F. Kniep, S. M. Walter, E. Herdweek, S. M.
Huber, Chem. Eur. J. 2012, 18, 1306. c) F. Kniep, L. Rout, S. M. Walter,
H. K. V. Bensch, S. H. Jungbauer, E. Hertweck, S. M. Huber, Chem.
Commun. 2012, 48, 9299. d) R. Castelli, S. Schindler, S. M. Walter, F.
Kniep, H. S. Overkleeft, G. A. van der Marel, S. M. Huber, J. D. C.
Codée, Chem. Asian J. 2014, 9, 2095. S. H. Jungbauer, S. M. Walter, S.
Schindler, L. Rout, F. Kniep, S. M. Huber, Chem. Commun. 2014, 50,
6281. e) W. He, Y.-C. Ge, C.-H. Tan, Org. Lett. 2014, 16, 3244. f) Y.
Takeda, D. Hisakuni, C.-H. Lin, S. Minakata, Org. Lett. 2015, 17, 318.
g) M. Saito, N. Tsuji, Y. Kobayashi, Y. Takemoto, Org. Lett. 2015, 17,
3000. h) S. H. Jungbauer, S. M. Huber, J. Am. Chem. Soc. 2015, 137,
12110. i) M. Saito, Y. Kobayashi, S. Tsuzuki, Y. Takemoto, Angew.
Chem. Int. Ed., 2017, 56, 7653. Only 2-iodobenzimidazolium triflate
[24] When the donor 1 and amide 2a was reacted using n-Bu4N+OTf‒ (tetra-
n-butylammonium trifluoromethanesulfonate) as catalyst (10 mol%) in
CH2Cl2, the products were not obtained, either. We then added n-
Bu4N+OTf‒ (10 mol%) to the condition of entry 10 (Table 1), but the
chemical yields were not improved at all (4a: ±5%).
[25] See the Supporting Information for details.
[26] XB interaction of 9•TfOH with Lewis bases was suggested by X-ray
(Figure S1) and computational studies (Figures S4). See the
Supporting Information for details.
[27] For the proposed structure, see: A. Ata, D. S. Tan, W. L. Matochko, J. K.
Adesanwo, Phytochem. Lett. 2011, 4, 34.
[28] C. Fang, K. Wang, Z. R. Stephen, Q. Mu, F. M. Kievit, D. T. Chiu, O. W.
Press, M. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 6674.
This article is protected by copyright. All rights reserved.