Journal of the American Chemical Society
ARTICLE
(2) Molecular Motors; Schilwa, M., Ed.; Wiley-VCH: Weinheim,
Germany, 2003.
(10) Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev.
2005, 105, 1281–1376.
(3) (a) Al-Atar, U.; Fernandes, R.; Johnsen, B.; Baillie, D.; Branda,
N. R. J. Am. Chem. Soc. 2009, 131, 15966–15967. (b) Elbaz, J.; Wang,
Z.-G.; Orbach, R.; Willner, I. Nano Lett. 2009, 9, 4510–4514. (c) Silvi, S.;
Constable, E. C.; Housecroft, C. E.; Beves, J. E.; Dunphy, E. L.;
Tomasulo, M.; Raymo, F. M.; Credi, A. Chem.—Eur. J. 2009,
15, 178–185. (d) Wang, X.; Zhu, J.; Smithrud, D. B. J. Org. Chem.
2010, 75, 3358–3370. (e) Gassensmith, J. J.; Matthys, S.; Lee, J.-J.;
Wojcik, A.; Kamat, P.; Smith, B. D. Chem.—Eur. J. 2010, 16, 2916–2921.
(f) Davis, J. J.; Orlowski, A. G.; Rahman, H.; Beer, P. D. Chem. Commun
2010, 54–63. (g) Russew, M.-M.; Hecht, S. Adv. Mater. 2010,
22, 3348–3360.
(4) (a) Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Brown, C. L.;
Credi, A.; Frechet, J. M. J.; Leon, J. W.; Raymo, F. M.; Spencer, N.;
Stoddart, J. F.; Venturi, M. J. Am. Chem. Soc. 1996, 118, 12012–12020.
(b) Collin, J.; Gavina, P.; Sauvage, J.-P. New J. Chem. 1997, 21, 525–528.
(c) Lane, A. S.; Leigh, D. A.; Murphy, A. J. Am. Chem. Soc. 1997,
119, 11092–11093. (d) Loeb, S. J.; Wisner, J. A. Chem. Commun
2000, 1939–1940. (e) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh,
D. A.; Mottier, L.; Paolucci, F.; Roffia, S.; Wurpel, G. W. Science 2001,
291, 2124–2128. (f) Jeppesen, J. O.; Nielsen, K. A.; Perkins, J.; Vignon,
S. A.; Di Alberto, F.; Ballardini, R.; Gandolfi, M. T.; Venturi, M.; Balzani,
V.; Becher, J.; Stoddart, J. F. Chem.—Eur. J. 2003, 9, 2982–3007.
(g) Badjiꢀc, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science
2004, 303, 1845–1849. (h) Kang, S.; Vignon, S. A.; Tseng, H.; Stoddart,
J. F. Chem.—Eur. J. 2004, 10, 2555–2564. (i) Aprahamian, I.; Miljanic,
O. S.; Dichtel, W. R.; Isoda, K.; Yasuda, T.; Kato, T.; Stoddart, J. F. Bull.
Chem. Soc. Jpn. 2007, 80, 1856–1869. (j) Durola, F.; Lux, J.; Sauvage, J.-
P. Chem.—Eur. J. 2009, 15, 4124–4134.
(5) (a) Jimenez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Angew.
Chem., Int. Ed. 2000, 39, 3284–3287. (b) Chiu, S.; Rowan, S. J.; Cantrill,
S. J.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem.—Eur. J. 2002,
8, 5170–5183. (c) Berna, J.; Leigh, D. A.; Lubomska, M.; Mendoza,
S. M.; Perez, E. M.; Rudolf, P.; Teobaldi, G.; Francesco, Z. Nat. Mater.
2005, 4, 704–710. (d) Ebron, V. H.; Yang, Z. W.; Seyer, D. J.; Kozlov,
M. E.; Oh, J. Y.; Xie, H.; Razal, J.; Hall, L. J.; Ferraris, J. P.; MacDiarmid,
A. G.; Baughman, R. H. Science 2006, 311, 1580–1583. (e) Stadler, A.;
Kyritsakas, N.; Graff, R.; Lehn, J.-M. Chem.—Eur. J. 2006,
12, 4503–4522. (f) Song, C.; Swager, T. M. Org. Lett. 2008,
10, 3575–3578. (g) Clark, P. G.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2009, 131, 13631–13633. (h) Juluri, B. K.; Kumar, A. S.; Liu,
Y.; Ye, T.; Tang, Y.-W.; Flood, A. H.; Fang, L.; Stoddart, J. F.; Weiss,
P. S.; Huang, T. J. ACS Nano 2009, 3, 291–300. (i) Miwa, K.; Furusho,
Y.; Yashima, E. Nat. Chem. 2010, 2, 444–449.
(6) (a) Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. J. Am. Chem. Soc.
2006, 128, 4058–4073. (b) Serreli, V.; Lee, C.; Kay, E. R.; Leigh, D. A.
Nature 2007, 445, 523–527. (c) Alvarez-Pꢀerez, M.; Goldup, S. M.; Leigh,
D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836–1838.
(7) (a) Shin, J.; Pierce, N. A. J. Am. Chem. Soc. 2004,
126, 10834–10835. (b) Tian, Y.; He, Y.; Chen, Y.; Yin, P.; Mao, C.
Angew. Chem., Int. Ed. 2005, 44, 4355–4358. (c) Yin, P.; Choi, H. M. T.;
Calvert, C. R.; Pierce, N. A. Nature 2008, 451, 318–322. (d) Green, S. J.;
Bath, J.; Turberfield, A. J. Phys. Rev. Lett. 2008, 101, 238101.
(e) Omabegho, T.; Sha, R.; Seeman, N. C. Science 2009, 324, 67–71.
(f) von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010,
2, 96–101.
(11) (a) Kelly, T. R.; De Silva, S. H.; Silva, R. A. Nature 1999,
401, 150–152. (b) Koumura, N.; Zijlstra, R .W.; van Delden, R. A.;
Harada, N.; Feringa, B. L. Nature 1999, 401, 152–155. (c) Leigh, D. A.;
Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Nature 2003, 424, 174–179.
(d) Hernꢀandez, J. V.; Kay, E. R.; Leigh, D. A. Science 2004,
306, 1532–1537. (e) Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa,
B. L. Science 2005, 310, 80–82. (f) Lin, Y; Dahl, B. J.; Branchaud, B. P.
Tetrahedron Lett. 2005, 46, 8359–8362. (g) Dahl, B. J.; Branchaud, B. P.
Org. Lett. 2006, 8, 5841–5844. (h) Feringa, B. L. J. Org. Chem. 2007,
72, 6635–6652. (i) Kelly, T. R.; Cai, X. L.; Damkaci, F.; Panicker, S. B.;
Tu, B.; Bushell, S. M.; Cornella, I.; Piggott, M. J.; Salives, R.; Cavero, M.;
Zhao, Y.; Jasmin, S. J. Am. Chem. Soc. 2007, 129, 376–386.
(12) By configuration we mean cisꢀtrans isomerism around double
bonds as suggested by convention. We are distinguishing here between
configurational and conformational rotation for the simple fact that
energy barriers associated with these two processes are quite different.
These differences in isomerization rates can be very important in future
applications.
(13) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.—Eur. J. 2011,
17, 248–258.
(14) (a) Vicini, P.; Zani, F.; Cozzini, P.; Doytchinova, I. Eur. J. Med.
Chem. 2002, 37, 553–564. (b) Loncle, C.; Brunel, J.; Vidal, N.;
Dherbomez, M.; Letourneux, Y. Eur. J. Med. Chem. 2004,
39, 1067–1071. (c) Savini, L.; Chiasserini, L.; Travagli, V.; Pellerano,
C.; Novellino, E.; Cosentino, S.; Pisano, M. B. Eur. J. Med. Chem. 2004,
39, 113–122. (d) Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Bioorg.
Med. Chem. 2005, 14, 366–372. (e) Masunari, A.; Tavares, L. C. Bioorg.
Med. Chem. 2007, 15, 4229–4236. (f) Vicini, P.; Incerti, M.; La Colla, P.;
Loddo, R. Eur. J. Med. Chem. 2009, 44, 1801–1807.
(15) (a) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders,
J. K. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898–952.
(b) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.;
Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652–3711. (c) Lehn,
J.-M. Chem Soc. Rev. 2007, 36, 151–160.(d) Miller, B. L. Dynamic
Combinatorial Chemistry. In Drug Discovery, Bioorganic Chemistry, and
Materials Science; John Wiley & Sons, Inc.: Hoboken, NJ, 2010.
(16) (a) Barboiu, M.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 5201–5206. (b) Stadler, A.-M.; Kyritsakas, N.; Lehn, J.-M. Chem.
Commun 2004, 2024–2025. (c) Hecht, S.; Huc, I., Eds. Foldamers;
Wiley-VCH: Weinheim, Germany, 2007. (d) Stadler, A.-M.; Ramírez, J.;
Lehn, J.-M. Chem.—Eur. J. 2010, 16, 5369–5378.
(17) (a) Petitjean, A.; Khoury, R. G.; Kyritsakas, N.; Lehn, J.-M. J.
Am. Chem. Soc. 2004, 126, 6637–6647. (b) Ulrich, S.; Petitjean, A.; Lehn,
J.-M. Eur. J. Inorg. Chem. 2010, 1913–1928.
(18) McCarthy, C. G. In The Chemistry of the Carbon-Nitrogen Bond;
Patai, S., Ed.; John Wiley and Sons: New York, 1970; pp 392ꢀ399.
(19) Parmerter, S. M. In Organic Reactions; Adam, R., Ed.; Wiley-
VCH: New York, 1959; Vol. 10, p 1.
(20) (a) Yao, H. C. J. Org. Chem. 1964, 29, 2959–2963. (b) Bose,
A. K.; Kugajevsky, I. Tetrahedron 1967, 23, 1489–1497. (c) Karabatsos,
G. J.; Taller, R. A. Tetrahedron 1968, 24, 3923–3937. (d) Mitchell, A. D.;
Nonhebel, D. C. Tetrahedron Lett. 1975, 16, 3859–3862. (e) Mitchell,
A. D.; Nonhebel, D. C. Tetrahedron 1979, 35, 2013–2019. (f) Bertolasi,
V.; Ferretti, V.; Gilli, P.; Issa, Y. M.; Sherif, O. E. J. Chem. Soc., Perkin
Trans. 2 1993, 2223–2228.
(8) (a) Gu, H.; Chao, J.; Xiao, S.-J.; Seeman, N. C. Nature 2010,
465, 202–205. (b) Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.;
Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R.; Stojanovic, M. N.;
Walter, N. G.; Winfree, E.; Yan, H. Nature 2010, 465, 206–210.
(9) (a) Collier, C.; Mattersteig, G.; Wong, E.; Luo, Y.; Beverly, K.;
Sampaio, J.; Raymo, F.; Stoddart, J.; Heath, J. R. Science 2000,
289, 1172–1175. (b) Flood, A.; Stoddart, J.; Steuerman, D.; Heath,
J. R. Science 2004, 306, 2055–2056. (c) Green, J. E.; Choi, J. W.; Boukai,
A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff,
B. A.; Xu, K.; Shin, Y. S.; Tseng, H.; Stoddart, J. F.; Heath, J. R. Nature
2007, 445, 414–417.
(21) (a) Zollinger, H. Colour Chemistry. Synthesis, Properties and
Application of Organic Dyes and Pigments; VCH: Weinheim, 1991; pp
45ꢀ68. (b) Kelemen, J.; Moss, S.; Sauter, H.; Winkler, T. Dyes Pigm.
1982, 3, 27–47. (c) Hihara, T.; Okada, Y.; Morita, Z. Dyes Pigm. 2006,
69, 151–176. (d) Lee, H. Y.; Song, X.; Park., H.; Baik, M.-H.; Lee, D. J.
Am. Chem. Soc. 2010, 132, 12133–12144.
(22) (a) Kessler, H. Tetrahedron 1974, 30, 1861–1870. (b) Padwa,
A.; Albrecht, F. J. Am. Chem. Soc. 1974, 96, 4849–4857. (c) Padwa, A.
Chem. Rev. 1977, 77, 37–68.
(23) (a) Curtin, D. Y.; Grubbs, E. J.; McCarty, C. G. J. Am. Chem. Soc.
1966, 88, 2775–2786. (b) Kerek, F.; Ostrogovich, G.; Simon, Z. J. Chem.
9821
dx.doi.org/10.1021/ja200699v |J. Am. Chem. Soc. 2011, 133, 9812–9823