¨
R. Muller and S. Ostreicher, Angew. Chem., Int. Ed., 2009, 48,
the reaction with ClSiMe3 to afford the corresponding
chlorotriborane(5) 3. Treatment of 3 with the silver salt in
ether gave the hydroxytriborane(5) 5. Formation of 5 was
explained by assuming an unstable cationic intermediate 4 and
subsequent decomposition of the ether molecule.
¨
9735–9738; (c) H. Braunschweig, C.-W. Chiu, K. Radacki and
T. Kupfer, Angew. Chem., Int. Ed., 2010, 49, 2041–2044;
(d) A. Blumenthal, P. Bissinger and H. Schmidbaur,
J. Organomet. Chem., 1993, 462, 107–110; (e) T. Imamoto and
T. Hikosaka, J. Org. Chem., 1994, 59, 6753–6759; (f) J. Monot,
´
A. Solovyev, H. Bonin-Dubarle, E. Derat, D. P. Curran,
M. Robert, L. Fensterbank, M. Malacria and E. Lacote, Angew.
Chem., Int. Ed., 2010, 49, 9166–9169.
Notes and references
12 Y. Segawa, M. Yamashita and K. Nozaki, Angew. Chem., Int. Ed.,
2007, 46, 6710–6713.
13 M. Yamashita, Y. Suzuki, Y. Segawa and K. Nozaki, J. Am.
Chem. Soc., 2007, 129, 9570–9571.
14 T. Kajiwara, T. Terabayashi, M. Yamashita and K. Nozaki,
Angew. Chem., Int. Ed., 2008, 47, 6606–6610.
15 Y. Okuno, M. Yamashita and K. Nozaki, Angew. Chem., Int. Ed.,
2011, 50, 920–923.
1 J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry:
Principles of Structure and Reactivity, HarperCollins College
Publishers, New York, 1993.
2 W. N. Lipscomb, Angew. Chem., 1977, 89, 685–696.
3 K. Wade, Electron Deficient Compounds, Springer, New York, 1971.
4 H. Noth and M. Wagner, Chem. Ber., 1991, 124, 1963–1972.
¨
¨
5 G. Linti, D. Loderer, H. Noth, K. Polborn and W. Rattay, Chem.
Ber., 1994, 127, 1909–1922.
6 K. H. Hermannsdorfer, E. M. Und and H. Noth, Chem. Ber.,
16 It is noteworthy that a treatment of 3 with AgB(C6F5)4 in CD2Cl2
at room temperature did not afford 5 but immediately gave an
unidentified product having three different Dip groups in a 2 : 1 : 1
ratio (see ESIw).
¨
1970, 103, 516–527.
¨
7 The related triborane(5) B3F5 was synthesized by a reaction of
elemental boron under BF3 and was characterized by solid IR
spectroscopy. See (a) P. L. Timms, J. Am. Chem. Soc., 1967, 89,
1629–1632. An additional crystallographic study on CO-adducts of
tetraborane(6) derivatives was also reported; (b) J. C. Jeffery,
N. C. Norman, J. A. J. Pardoe and P. L. Timms, Chem. Commun.,
2000, 2367–2368.
17 P. Koelle and H. Noth, Chem. Rev., 1985, 85, 399–418.
¨
18 W. E. Piers, S. C. Bourke and K. D. Conroy, Angew. Chem., Int.
Ed., 2005, 44, 5016–5036.
19 T. D. Ranatunga and H. I. Kenttamaa, J. Am. Chem. Soc., 1992,
114, 8600–8604.
20 Related three-coordinate boryl cations are utilized for direct
borylation reactions of arene. (a) A. Del Grosso,
R. G. Pritchard, C. A. Muryn and M. J. Ingleson, Organometallics,
2009, 29, 241–249; (b) A. Del Grosso, P. J. Singleton, C. A. Muryn
and M. J. Ingleson, Angew. Chem., Int. Ed., 2011, 50, 2102–2106.
21 Oxonium acid, [H(OEt2)2][B(C6F5)4], may be generated in this
reaction, though it could not be observed because of its insolubility
in C6D6. The compound was reported in the following
8 Y. Segawa, M. Yamashita and K. Nozaki, Science, 2006, 314,
113–115.
9 Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, J. Am.
Chem. Soc., 2008, 130, 16069–16079.
10 M. Yamashita, Y. Suzuki, Y. Segawa and K. Nozaki, Chem. Lett.,
2008, 802–803.
11 Related boron-centered anionic species have been reported.
(a) H. Braunschweig, M. Burzler, R. D. Dewhurst and
K. Radacki, Angew. Chem., Int. Ed., 2008, 47, 5650–5653;
(b) H. Braunschweig, P. Brenner, R. D. Dewhurst, M. Kaupp,
reference. P. Jutzi, C. Muller, A. Stammler and H.-G. Stammler,
¨
Organometallics, 2000, 19, 1442.
c
5890 Chem. Commun., 2011, 47, 5888–5890
This journal is The Royal Society of Chemistry 2011