34
J. Li et al. / Inorganica Chimica Acta 371 (2011) 27–35
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ica.2010.
Acknowledgments
This work was supported by grants from the Natural Science
Foundation of China (Nos. 20971065; 91022011; 21021062) and
National Basic Research Program of China (2007CB925103;
2010CB923303).
Appendix A. Supplementary material
CCDC 762028–762031 contain the supplementary crystallo-
graphic data for compounds 1–3. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
Fig. 7. The TGA diagram of compounds 1–4.
3.4. Thermogravimetric analyses and X-ray powder diffraction
In order to examine the thermal stabilities of these compounds,
we carried out TG analyses (Fig. 7). Samples 1–4 were heated to
750 °C under N2 atmosphere with a heating rate of 10 °C/min.
The TGA study of compound 1 shows no weight loss from room
temperature to 325 °C, suggesting that the framework is thermally
stable. Above 325 °C, a rapid weight loss is observed which is
attributed to the decomposition of the organic ligands. The TGA
curve for 2 shows that compound 2 is more stable than compound
1, it can be stable up to 400 °C and above that the decomposition of
the compound 2 occurred. For compound 3, it shows three steps of
weight loss. The first weight loss of 6.0% between 22 and 300 °C
corresponds to the loss of one and a half lattice water molecules
(calcd 5.9%). The other two steps correspond to the decomposition
of two kinds of organic ligands which began above 305 °C. For com-
pound 4, the first weight loss is observed from 44 to 125 °C which
is attributed to the loss of one lattice water molecules, with a
weight loss of 3.0% (calcd 3.31%). No further weight loss was ob-
served until it reached 293 °C, at which a rapid weight loss oc-
curred, corresponding to the decomposition of the organic
ligands. The purities of polymers are confirmed by X-ray power dif-
fraction analyses, in which the experimental spectra of polymers
1–4 are almost consistent with their simulated spectra (Figs. S1–
S4, Supporting information).
References
[1] K.S. Walton, R.Q. Snurr, J. Am. Chem. Soc. 129 (2007) 8552.
[2] C.M. Wang, S.T. Zheng, G.Y. Yang, Inorg. Chem. 46 (2007) 616.
[3] H.X. Zhao, G.L. Zhuang, S.T. Wu, L.S. Long, H.Y. Guo, Z.G. Ye, R.B. Huang, L.S.
Zheng, Chem. Commun. (2009) 1644.
[4] Z.R. Pan, J. Xu, H.G. Zheng, K.X. Huang, Y.Z. Li, Z.J. Guo, S.R. Batten, Inorg. Chem.
48 (2009) 5772.
[5] L. Pan, D. Holson, L.R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem., Int. Ed. 46
(2006) 616.
[6] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, CrystEngComm 11 (2009)
2143.
[7] Z.R. Pan, H.G. Zheng, T.W. Wang, Y. Song, Y.Z. Li, Z.J. Guo, S.R. Batten, Inorg.
Chem. 47 (2008) 9528.
[8] H.K. Liu, X.H. Huang, T.H. Lu, X.J. Wang, W.Y. Sun, B.S. Kang, Dalton Trans.
(2008) 3178.
[9] D.G. Ding, B.L. Wu, Y.T. Fan, H.W. Hou, Cryst. Growth Des. 9 (2009) 508.
[10] B.H. Ye, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 249 (2005) 545.
[11] Z.M. Sun, J.G. Mao, Y.Q. Sun, H.Y. Zeng, A. Clearfield, Inorg. Chem. 43 (2004)
336.
[12] X.H. Bu, M.L. Tong, H.C. Chang, S. Kitagawa, S.R. Batten, Angew. Chem., Int. Ed.
43 (2004) 192.
[13] S. Fortin, A.L. Beauchamp, Inorg. Chem. 40 (2001) 105.
[14] R. Atencio, M. Chacon, T. Gonzalez, A. Briceno, G. Agrifoglio, A. Sierraalta,
Dalton Trans. (2004) 505.
[15] Z.R. Pan, Y. Song, Y. Jiao, Z.J. Fang, Y.Z. Li, H.G. Zheng, Inorg. Chem. 47 (2008)
5162.
[16] J.P. Zhao, B.W. Hu, Q. Yang, T.L. Hu, X.H. Bu, Inorg. Chem. 48 (2009) 7111.
[17] H. Ren, T.Y. Song, J.N. Xu, S.B. Jing, Y. Yu, P. Zhang, L.R. Zhang, Cryst. Growth
Des. 9 (2009) 105.
[18] A.N. Khlobystov, A.J. Blake, N.R. Champness, D.A. Lemenovskki, A.G. Majouga,
N.V. Zyk, M. Schröder, Coord. Chem. Rev. 222 (2001) 155.
[19] A. Escande, L. Guénée, K.L. Buchwalder, C. Piguet, Inorg. Chem. 48
(2009) 1132.
[20] R.Q. Zou, X.H. Bu, M. Du, Y.X. Sui, J. Mol. Struct. 707 (2004) 11.
[21] B.B. Ding, Y.Q. Weng, Z.W. Mao, C.K. Lam, X.M. Chen, B.H. Ye, Inorg. Chem. 44
(2005) 8836.
[22] C.S. Liu, X.S. Shi, J.R. Li, J.J. Wang, X.H. Bu, Cryst. Growth Des. 6 (2006) 656.
[23] J. Lee, K. Ghosh, P.J. Stang, J. Am. Chem. Soc. 131 (2009) 12028.
[24] J.S. Hu, Y.J. Shang, X.Q. Yao, L. Qin, Y.Z. Li, Z.J. Guo, H.G. Zheng, Z.L. Xue, Cryst.
Growth Des. 10 (2010) 2676.
[25] Z.W. Wang, C.C. Ji, J. Li, Z.J. Guo, Y.Z. Li, H.G. Zheng, Cryst. Growth Des. 9 (2009)
475.
[26] X.Y. Cao, Q.P. Lin, Y.Y. Qin, J. Zhang, Z.J. Li, J.K. Cheng, Y.G. Yao, Cryst. Growth
Des. 9 (2009) 20.
[27] L.L. Johnston, J.H. Nettleman, M.A. Braverman, L.K. Sposato, R.M. Supkowski,
R.L. LaDuca, Polyhedron 29 (2010) 303.
[28] L. Qin, J.S. Hu, L.F. Huang, Y.Z. Li, Z.J. Guo, H.G. Zheng, Cryst. Growth Des. 10
(2010) 4176.
4. Conclusions
In summary, we successfully synthesized four novel coordina-
tion polymers based on 2-PBIM and OH-H2BDC ligands with differ-
ent metals by solvothermal method. All these compounds get the
3D supramolecular structures through intermolecular interactions.
It demonstrates that the weakly intermolecular interactions, such
as hydrogen bonding,
p–p
stacking interactions and C–Hꢀ ꢀ ꢀ
p stack-
ing interactions, play a very important role in controlling the coor-
dination polymers, especially further linking the discrete subunits
and low-dimensional entities into high-dimensional supramolecu-
lar networks. In addition, luminescent and magnetic properties of
these compounds have also been studied. Luminescence emissions
are observed in compounds 1 and 2. Magnetic susceptibility mea-
surements indicate that both compounds 3 and 4 exhibit antiferro-
magnetic coupling between metal atoms.
Supplementary material CCDC reference numbers 762028 -
762031 contain the supplementary crystallographic data for com-
pounds 1–3. These data can be available free of charge via http://
[29] E. Alcalde, I. Dinares, L. Perez-Garcia, T. Roca, Synthesis (1992) 395.
[30] Y.J. Bauer, G.E. Wiegand, W.J. Fanshawe, S.R. Sdir, J. Med. Chem. 12
(1969) 944.
[31] G.M. Sheldrick, SHELXTL (Version 6.10), 2002, Bruker AXS Inc., Madison,
Wisconsin, USA.
[32] B. Klaus, Diamond (Version 3.1), 2005, Crystal Impact GbR, Bonn, Germany.