catalysis into asymmetric transformations has been re-
ported. White and co-workers have accomplished an en-
antioselective allylic CꢀH acetoxylation using a combination
of Pd(II)-bis(sulfoxide) and optically active Cr(III)-salen
catalysts.7 If enantioselective oxidative allylic substitutions
were governed by only a chiral Pd catalyst, as in Tsujiꢀ
Trost reactions, they might offer a promising and eco-
conscious synthetic protocol for obtention of optically
active allyl esters. We have already discerned that SPRIX,
a chiral ligand possessing isoxazoline coordination
units on a spiro backbone, leads to Pd exhibiting a
unique reactivity in asymmetric oxidative reactions
upon coordination.8 This exceptional property of
SPRIX caused us to develop an enantioselective oxida-
tive allylic substitution. Here, we disclose an enantio-
selective intramolecular oxidative CꢀH esterification
promoted by the PdꢀSPRIX catalyst.
Scheme 1. Oxidative Cyclization of 4-Alkenoic Acids
Table 1. Screening of Chiral Ligands in the Enantioselective
Intramolecular Oxidative Cyclization of 1aa
In 1993, Larock and Annby independently published an
oxidative cyclization of 4-alkenoic acids 1 producing ra-
cemic γ-lactones 2 in good yields (Scheme 1).9 Since they
mentioned the possibility of the π-allyl Pd mechanism,10
weappliedSPRIX tothiscatalyticreaction. To ourdelight,
in the reaction of 5-methyl-2,2-diphenylhex-4-enoic acid
(1a), the desired lactone product 2a was obtained in an
optically active form. Thus, 1a was stirred with 10 mol %
of Pd(OAc)2, 11 mol % of (M,S,S)-i-Pr-SPRIX, and 4
equiv of p-benzoquinone in CH2Cl2 at 25 °C for 10 h to
afford a 70% ee of 3,3-diphenyl-5-(prop-1-en-2-yl)-
dihydrofuran-2(3H)-one (2a) quantitatively (Table 1, en-
try 1). Other chiral ligands were noticeably ineffective under
identical conditions. Reactions using (ꢀ)-sparteine,(S,S)-i-Pr-
BOXAX, and (R)-BINAP produced an enantiomerically
chiral
ligand
convn
(%)b
yield
(%)b
ee
entry
(%)c
1
2
3
4
5
6
7f
(M,S,S)-i-Pr-SPRIX
(ꢀ)-sparteine
(S,S)-i-Pr-BOXAX
(R)-BINAP
(R,R)-Bn-BOX
3e
100
24
27
13
<2
41
11
>98
10
4
70
57
51
40
;
10
;
6
NDd
18
5
none
a All reactions were performed in the presence of 10 mol % of
Pd(OAc)2, 11 mol % of chiral ligand, and 4 equiv of p-benzoquinone
at 25 °C for 10 h in CH2Cl2 (0.1 M) under a nitrogen atmosphere.
b Determined by 1H NMR using p-hydroxyacetophenone as an internal
standard. c Determined by HPLC analysis. d Not determined. e 5 mol %
of complex 3 was used instead of Pd(OAc)2. f 24 h.
(5) For representative recent reports of a catalytic reaction triggered
by CꢀH bond activation, see: (a) Yao, T.; Hirano, K.; Satoh, T.; Miura,
M. Angew. Chem., Int. Ed. 2011, 50, 2990. (b) Stowers, K. J.; Fortner,
K. C.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 6541. (c) Yoo, E. J.;
Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133,
7652. (d) Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani,
N. J. Am. Chem. Soc. 2011, 133, 8070.
(6) A few examples were reported; see: (a) Trost, B. M.; Organ, M. G.
J. Am. Chem. Soc. 1994, 116, 10320. (b) Kirsch, S.; Overman, L. E. J.
Am. Chem. Soc. 2005, 127, 2866. Other metal catalysts can be used. Cu:
(c) Geurts, K.; Fletcher, S. P.; Feringa, B. L. J. Am. Chem. Soc. 2006,
128, 15572. Ru:(d) Kanbayashi, N.; Onitsuka, K. J. Am. Chem. Soc.
2010, 132, 1206.
(7) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448.
(8) For a review, see: (a) Bajracharya, G. B.; Arai, M. A.; Koranne,
P. S.; Suzuki, T.; Takizawa, S.; Sasai, H. Bull. Chem. Soc. Jpn. 2009, 82,
285. Forrecentexamples,see:(b)Tsujihara, T.;Takenaka, K.;Onitsuka, K.;
Hatanaka, M.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452. (c) Tsujihara, T.;
Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka, K.; Hatanaka, M.;
Sasai, H. J. Org. Chem. 2009, 74, 9274. (d) Takenaka, K.; Tanigaki, Y.; Patil,
M. L.; Rao, C. V. L.; Takizawa, S.; Suzuki, T.; Sasai, H. Tetrahedron:
Asymmetry 2010, 21, 767. (e) Takenaka, K.; Mohanta, S. C.; Patil, M. L.;
Rao, C. V. L.; Takizawa, S.; Suzuki, T.; Sasai, H. Org. Lett. 2010, 12, 3480.
(f) Bajracharya, G. B.; Koranne, P. S.; Nadaf, R. N.; Gabr, R. K. M.;
Takenaka, K.; Takizawa, S.; Sasai, H. Chem. Commun. 2010, 46, 9064.
(h) Ramalingan, C.; Takenaka, K.; Sasai, H. Tetrahedron 2011, 67, 2889.
(g) Takenaka, K.; Hashimoto, S.; Takizawa, S.; Sasai, H. Adv. Synth. Catal.
2011, 353, 1067.
(9) (a) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298.
(b) Annby, U.; Stenkula, M.; Andersson, C.-M. Tetrahedron Lett. 1993,
34, 8545.
(10) A π-allyl Pd intermediate was also postulated for the synthesis of
racemic γ-lactones 2 via a sequential coupling/cyclization reaction; see:
(a) Larock, R. C.; Leuck, D. J.; Harrison, L. W. Tetrahedron Lett. 1987,
28, 4977. (b) Larock, R. C.; Leuck, D. J.; Harrison, L. W. Tetrahedron
Lett. 1988, 29, 6399.
enriched 2a in low conversions and yields (entries 2ꢀ4).
(R,R)-Bn-BOX rendered the consequent complex cataly-
tically inactive in this oxidative cyclization (entry 5). Even
though chiral Pd complex 3, a valuable catalyst for an
aymmetric Wacker-type cyclization of o-allylphenols,11
expedited the reaction moderately, the optical purity of
2a was as low as 10% ee (entry 6). A background reaction,
without any chiral ligands added, was negligible even after
24 h, resulting in only a trace amount of 2a (entry 7). These
(11) Hosokawa, T.; Okuda, C.; Murahashi, S.-I. J. Org. Chem. 1985,
50, 1282 and references cited therein.
Org. Lett., Vol. 13, No. 13, 2011
3507