Ioannis N. Houpis et al.
FULL PAPERS
8–9. The suspension was filtered and washed with water
(200 g). The wet cake was dried under vacuum at 40–508C
for 18 h to yield the free amine as a white solid which was
dissolved in DMF (500 mL) and was added to a separate
flask, containing (S)-2-(methoxycarbonylamino)-3,3-dime-
thylbutanoic acid (38.5 g,), HATU (77.3 g) and DMF
(800 mL) and Et3N (39.5 g). After 30 min the reaction was
judged complete by HPLC analysis and water (2.5 L) was
added at 25–308C. The suspension was stirred for 1 h at 25–
308C and filtered and washed with water (2 L). The wet
cake was suspended in ethanol (2 L) and the slurry stirred
for 3 h at 20–258C. Then the mixture was filtered again and
washed with ethanol (200 mL). The wet cake was dried
under vacuum for 12 h at 40–458C to afford 1 as a white
solid; yield: 26.97 g (35.44 mmol). 1H NMR: (DMSO,
400 MHz): d=8.41 (d, J=2 Hz, 1H), 7.94 (dd, J=2.4 Hz,
J’=4.8, 1H), 7.71 (d, J=8.8 Hz, 1H), 7.62 (d, J=8 Hz, 1H),
7.49 (d, J=8 Hz, 2H), 7.29 (d, J=8.4 Hz„ 2H), 7.25 (m,
2H), 7.15 (d, J=5.2 Hz, 1H), 7.11 (m, 2H), 6.89 (d, J=
8.8 Hz, 1H), 6.73 (d, J=8 Hz, 1H), 6.63 (d, J=4.8 Hz, 1H),
4.84 (d, J=5.6 Hz, 2H), 4.65 (d, J=4 Hz, 1H), 3.94 (m,
2H), 3.88 (s, 3H), 3.76 (d, J=3.6 Hz, 1H), 3.55 (m, 1H),
3.49 (s, 3H), 2.87 (m, 4H), 2.70 (m, 3H), 1.95 (m, 1H), 1.79
(m, 1H), 1.69 (m, 1H), 1.43 (m, 1H), 0.80 (s, 9H); 13C NMR
(CDCl3): d=174.4, 170.3, 163.3, 162.2, 159.8, 156.8, 144.8,
139.0, 137.7, 136.1, 135.7, 134.8, 131.7, 131.6, 130.2, 129.7,
128.5, 128.4, 127.6, 126.9, 126.3, 124.5, 122.8, 115.5, 115.3,
111.0, 69.0, 66.2, 63.2, 62.9, 55.4, 53.7, 51.8, 49.1, 43.1, 36.8,
34.1, 32.1, 29.2, 27.1, 20.7; HR-MS: m/z=761.3392, Calcd
for C41H49FN4O7S [M+H]+: 761.3379.
B. K. Handa, J. Kay, A. Krohn, R. W. Lambert, J. H.
Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J.
Ritchie, D. L. Taylor, G. J. Thomas, P. J. Machin, Sci-
ence 1990, 248, 358; b) W. Goehring, S. Gokhale, H.
Hilpert, F. F. Roessler, M. Schlageter, P. Vogt, Chimia
1996, 50, 532; c) S. W. Kaldor, V. J. Kalish, J. F. Davies
II, B. V. Shetty, J. E. Fritz, K. Appelt, J. A. Burgess,
K. M. Campanale, N. Y. Chirgadze, D. K. Clawson,
B. A. Dressman, S. D. Hatch, D. A. Khalil, M. B. Kosa,
P. P. Lubbehusen, M. A. Muesing, A. K. Patick, S. H.
Reich, K. S. Su, J. H. Tatlock, J. Med. Chem. 1997, 40,
3979; d) G. R. Painter, S. Ching, D. Reynolds, M. St.
Clair, B. M. Sadler, M. Elkins, R. Blum, R. Dornsife,
D. J. Livingston, J. A. Partaledis, S. Pazhanisamy, R. D.
Tung, M. Tisdale, Drugs Future 1996, 21, 347; e) L. A.
Sorbera, L. Martin, J. Castaner, R. M. Castaner, Drugs
Future 2001, 26, 224.
[6] A. K. Ghosh, S. P. McKee, W. J. Thompson, J. Org.
Chem. 1991, 56, 6500. Also see ref.[2] for a detailed de-
scription of the synthesis of 1 following this methodolo-
gy.
[7] Several methods have been described for the direct
and indirect synthesis of the threo isomer: a) G. Bold,
A. Fassler, H.-G. Capraro, R. Cozens, T. Klimkait, J.
Lazdins, J. Mestan, B. Poncioni, J. Rosel, D. Stover, M.
Tintelnot-Blomley, F. Acemoglu, W. Beck, E. Boss, M.
Eschbach, T. Hurlimann, E. Masso, S. Roussel, K.
Ucci-Stoll, D. Wyss, M. Lang, J. Med. Chem. 1998, 41,
3387; b) X. Rabasseda, J. Silvestre, J. Castaner, Drugs
Future 1999, 24, 375; c) H. Nogami, M. Kanai, M. Shi-
basaki, Chem. Pharm. Bull. 2003, 51, 702; d) P. Rad-
datz, A. Jonczyk, K.-O. Minck, C. J. Schmitges, J. Som-
broek, J. Med. Chem. 1991, 34, 3267; e) J. Barluenga, B.
Baragana, J. M. Concellon, J. Org. Chem. 1995, 60,
6696. Also see ref.[3] for more detailed references.
[8] T. Mase, I. N. Houpis, A, Akao, J. Dorziotis, K. Emer-
son, T. Hoang, T. Iida, T. Itoh, K. Kamei, S. Kato, Y.
Kato, M. Kawasaki, F. Lang, J. Lee, J. Lynch, P. Mali-
gres, A. Molina, T. Nemoto, S. Okada, R. Reamer, J. Z.
Song, D. Tschaen, T. Wada, D. Zewge, R. P. Volante,
P. J. Reider, K. Tomimoto, J. Org. Chem. 2001, 66,
6775.
References
[1] M. May, M. Gompels, V. Delpech, K. Porter, F. Post,
M. Johnson, D. Dunn, A. Palfreeman, R. Gilson, B.
Gazzard, T. Hill, J. Walsh, M. Fisher, C. Orkin, J. Ains-
worth, L. Bansi, A. Phillips, C. Leen, M. Nelson, J. An-
derson, C. Sabin, Br. Med. J. 2011, 343.
[2] B. Kesteleyn, K. Amssoms, W. Schepens, G. Hache, W.
Verschueren, W. Van De Vreken, K. Rombauts, G.
Meurs, P. Sterkens, B. Stoops, L. Baert, N. Austin, J.
Wegner, C. Masungi, I. Dierynck, S. Lundgren, D. Jçns-
son, K. Parkes, G. Kalayanov, H. Wallberg, ꢃ. Rosen-
quist, B. Samuelsson, K. Van Emelen, J. W. Thuring,
Bioorg. Med. Chem. Lett. 2013, 23, 310.
[9] D. Askin, K. K. Eng, K. Rossen, R. M. Purick, K. M.
Wells, R. P. Volante, P. J. Reider, Tetrahedron Lett.
1994, 35, 673.
[10] S.-C. Wen, J. A. Carlson, J. Org. Chem. 1992, 57, 379.
[11] For a comprehensive review on the synthesis of amino-
alkyl halomethyl ketones, see: M. R. Reeder, R. M.
Anderson, Chem. Rev. 2006, 106, 2828.
[3] For a detailed review on the industrial syntheses of
antiACHTUNGTRENNUNGretroviral medicines see: K. Izawa, T. Onishi,
Chem. Rev. 2006, 106, 2811.
[12] X. Wang, J. K. Thottathil, R. P. Polniaszek, Synlett 2000,
902.
[4] a) P. J. Ala, C.-H. Chang, in: Enzymes and Their Inhibi-
tion, (Eds. H. J. Smith, C. Simons), CRC Press LLC,
Boca Raton, FL, 2005, p 268; b) H.-G. Capraro, G.
Bold, A. Frꢄssler, R. Cozens, T. Klimkait, J. Lazdins, J.
Mestan, B. Poncioni, J. L. Rçsel, D. Stover, M. Lang,
Arch. Pharm. Pharm. Med. Chem. 1996, 329, 273;
c) W. J. Thompson, P. M. D. Fitzgerald, M. K. Holloway,
E. A. Emini, P. L. Darke, B. M. McKeever, W. A.
Schleif, J. C. Quintero, J. A. Zugay, T. J. Tucker, J. E.
Schwering, C. F. Homnick, J. Nunberg, J. P. Springer,
J. R. Huff, J. Med. Chem. 1992, 35, 1685.
[13] a) P. Chen, P. T. W. Cheng, S. H. Spergel, R. Zahler, X.
Wang, J. Thottathil, J. C. Barrish, R. P. Polniaszek, Tet-
rahedron Lett. 1997, 38, 3175; b) M.-N. Dufour, P.
Jouin, J. Poncet, A. Pantaloni, B. Castro, J. Chem. Soc.
Perkin Trans. 1 1986, 1895; c) K. Izawa, T. Onishi,
Chem. Rev. 2006, 106, 2811.
[14] Surprisingly, asymmetric hydrogenation methodology
has not been extensively used in the reduction of these
aminoalkyl halomethyl ketones. Transfer hydrogenation
methodology was successful in supplying the erythro
isomer with good selectivity, see: T. Hamada, T. Torii,
[5] a) N. A. Roberts, J. A. Martin, D. Kinchington, A. V.
Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin,
1838
ꢁ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 1829 – 1839