10.1002/anie.201801110
Angewandte Chemie International Edition
COMMUNICATION
Lett. 2016, 18, 1614-1617; i) L. M. Chapman, J. C. Beck, L. Wu, S. E.
Reisman, J. Am. Chem. Soc. 2016, 138, 9803-9806; j) C. García-
Morales, B. Ranieri, I. Escofet, L. López-Suarez, C. Obradors, A. I.
Konovalov, A. M. Echavarren, J. Am. Chem. Soc. 2017, 139, 13628-
13631.
quenched with methyl iodide in >20:1 diastereoselectivity. Upon
work-up with HCl the TMS group was released and
hebelphyllene E (1a) isolated in 50% yield over the two steps
(the minor isomer from the Zn(BH4)2 reduction was easily
separated at this stage). All analytical data of the synthetic
sample including optical rotation were in agreement with the
reported data of the natural product.[1c]
[5]
[6]
For reviews on [2+2] cycloadditions see: a) Y. Xu, M. L. Conner, M. K.
Brown, Angew. Chem. Int. Ed. 2015, 54, 11918-11928; Angew. Chem.
2015, 127, 12086-12097; b) S. Poplata, A. Tröster, Y.-Q. Zou, T. Bach,
Chem. Rev. 2016, 116, 9748-9815.
To confirm the relative configuration of carbon C-4, we also
synthesized epi-ent-hebelophyllene E (1b) starting from alkene
3h and the respective matched catalyst 4h. The synthesis
proceeded in 12% yield over nine steps using a closely related
sequence as the one for hebelophyllene E (1a) (see Supporting
Information for details). To our delight, the spectra of epi-ent-
hebelophyllene E (1b) were in stark disagreement with those
from the natural product. We also confirmed the relative
configuration of all other stereocenters by 2D NMR analysis (see
Supporting Information for details), which allows us to
confidently propose depicted structure 1a as the structure of
hebelophyllene E.
For a selection of recent enantioselective [2+2] cycloadditions utilizing
photochemical excitation see: a) F. Mayr, R. Brimioulle, T. Bach, J. Org.
Chem. 2016, 81, 6965-6971; b) T. R. Blum, Z. D. Miller, D. M. Bates, I.
A. Guzei, T. P. Yoon, Science 2016, 354, 1391; c) A. Tröster, R. Alonso,
A. Bauer, T. Bach, J. Am. Chem. Soc. 2016, 138, 7808-7811; d) Z. D.
Miller, B. J. Lee, T. P. Yoon, Angew. Chem. Int. Ed. 2017, 56, 11891-
11895; Angew. Chem. 2017, 129, 12053-12057; e) X. Huang, T. R.
Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J.
Am. Chem. Soc. 2017, 139, 9120-9123; f) K. L. Skubi, J. B. Kidd, H.
Jung, I. A. Guzei, M.-H. Baik, T. P. Yoon, J. Am. Chem. Soc. 2017, 139,
17186-17192.
[7]
For a selection of recent enantioselective [2+2] cycloadditions utilizing
Lewis acid catalysis see: a) T. Kang, S. Ge, L. Lin, Y. Lu, X. Liu, X.
Feng, Angew. Chem. Int. Ed. 2016, 55, 5541-5544; b) J.-L. Hu, L.-W.
Feng, L. Wang, Z. Xie, Y. Tang, X. Li, J. Am. Chem. Soc. 2016, 138,
13151-13154.
In summary, the first synthesis of the sesquiterpene
hebelophyllene
E
was accomplished and the relative
configuration of the side chain was assigned. Moreover, access
to the cis-fused geminal dimethylcyclobutane core was achieved
through development of a [2+2] cycloaddition involving a fully
functionalized alkene and founded on the identification of a
novel oxazaborolidine catalyst. Given the number of isolated
geminal dimethylcyclobutane natural products, this method itself
should be useful for future synthetic efforts in the field of
cyclobutane natural product synthesis.
[8]
[9]
For a selection of recent enantioselective [2+2] cycloadditions utilizing
transition metal catalysis see: a) R. Kumar, E. Tamai, A. Ohnishi, A.
Nishimura, Y. Hoshimoto, M. Ohashi, S. Ogoshi, Synthesis 2016, 48,
2789-2794; b) D. Kossler, N. Cramer, Chem. Sci. 2017, 8, 1862-1866.
a) B. B. Snider, D. K. Spindell, J. Org. Chem.1980, 45, 5017-5020; b) B.
B. Snider, E. Ron, J. Org. Chem. 1986, 51, 3643-3652. For a related
example see: H. M. R. Hoffmann, Z. M. Ismail, A. Weber, Tetrahedron
Lett. 1981, 22, 1953-1956.
[10] M. L. Conner, Y. Xu, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 3482-
3485.
[11] We have recently observed E/Z selectivity dependencies on the nature
of the oxazaborolidine catalyst: Y. Xu, Y. J. Hong, D. J. Tantillo, M. K.
Brown, Org. Lett. 2017, 19, 3703-3706.
Acknowledgements
We thank Indiana University and the National Institutes of Health
(R01GM110131) for financial support. The Deutsche
Forschungsgemeinschaft is acknowledged for postdoctoral
fellowship support to J.M.W.
January 13, 2018.
[13] The preferred pseudoaxial R-group arrangement is a result of the Z-
configuration of the alkene. When E-5a was subjected to the reduction
conditions using Crabtree's catalyst, 75% yield and 20:80 trans:cis
selectivity was observed.
Keywords: Natural Product Synthesis • [2+2] Cycloaddition •
[14] For reviews see: a) C. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev.
2008, 108, 2916-2927; b) B. H. Lipshutz, Synlett 2009, 509-524.
[15] a) B. H. Lipshutz, J. M. Servesko, Angew. Chem. Int. Ed. 2003, 42,
4789-4792; Angew. Chem. 2003, 115, 4937-4940; b) B. H. Lipshutz, J.
M. Servesko, B. R. Taft, J. Am. Chem. Soc. 2004, 126, 8352-8353; c) B.
H. Lipshutz, N. Tanaka, B. R. Taft, C.-T. Lee, Org. Lett. 2006, 8, 1963-
1966.
Enantioselective Catalysis
[1]
a) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty, D. Khasa,
Phytochemistry 1999, 51, 873-877; b) M. Wichlacz, W. A. Ayer, L. S.
Trifonov, P. Chakravarty, D. Khasa, Phytochemistry 1999, 52, 1421-
1425; c) M. Wichlacz, W. A. Ayer, L. S. Trifonov, P. Chakravarty, D.
Khasa, J. Nat. Prod. 1999, 62, 484-486.
[16] G. Scheid, W. Kuit, E. Ruijter, R. V. A. Orru, E. Henke, U. Bornscheuer,
L. A. Wessjohann, Eur. J. Org. Chem. 2004, 1063-1074.
[17] a) N. T. Anh, O. Eisenstein, Tetrahedron Lett. 1976, 17, 155-158; b) A.
Nguyen Trong, O. Eisenstein, J. M. Lefour, M. E. Tran Huu Dau, J. Am.
Chem. Soc. 1973, 95, 6146-6147.
[2]
a) C. D. Boyle, K. E. Hellenbrand, Can. J. Botany 1991, 69, 1764-1771;
b) C. D. Boyle, W. J. Robertson, P. O. Salonius, Can. J. For. Res. 1987,
17, 1480-1486.
[3]
[4]
For a review see: M. Wang, P. Lu, Org. Chem. Front. 2018, 5, 254-259.
For recent examples on geminal dimethylcyclobutane syntheses in
context of natural products see: a) Y. Kang, Y. Mei, Y. Du, Z. Jin, Org.
Lett. 2003, 5, 4481-4484; b) A. V. Kurdyumov, R. P. Hsung, K. Ihlen, J.
Wang, Org. Lett. 2003, 5, 3935-3938; c) M. P. Paduraru, P. D. Wilson,
Org. Lett. 2003, 5, 4911-4913; d) S. Dong, G. D. Parker, T. Tei, L. A.
Paquette, Org. Lett. 2006, 8, 2429-2431; e) M. Mondal, V. G. Puranik,
N. P. Argade, J. Org. Chem. 2007, 72, 2068-2076; f) M. Fleck, T. Bach,
Angew. Chem. Int. Ed. 2008, 47, 6189-6191; Angew. Chem. 2008, 120,
6284-6286; g) T. Hirokawa, S. Kuwahara, Eur. J. Org. Chem. 2013,
2780-2782; h) B. Ranieri, C. Obradors, M. Mato, A. M. Echavarren, Org.
[18] D. Ishiyama, Y. Fukushi, M. Ohnishi-Kameyama, T. Nagata, H. Mori, T.
Inakuma, Y. Ishiguro, J. Li, H. Kawagishi, Phytochemistry 1999, 50,
1053-1056.
[19] D. J. Cram, D. R. Wilson, J. Am. Chem. Soc. 1963, 85, 1245-1249.
[20] Higher catalyst loadings are tolerable, since the catalyst can be
synthesized in one step from commercially available starting materials.
[21] B. Neises, W. Steglich, Angew. Chem. Int. Ed. 1978, 17, 522-524;
Angew. Chem. 1978, 90, 556-557.
This article is protected by copyright. All rights reserved.