(100 ps) to probe the stability of the observed β-turn-like
conformations. ThelengthofthepresumedH-bondduring
the resulting trajectory was plotted against the number of
conformations observed with a specific distance when a
˚
clear prevalence for a H-bond (distance < 2.25 A) was
mainly observed for compounds bearing a cis configura-
tion at the double bond. Especially, 9- and 10-membered
ring systems showed a very narrow distance distribution
indicating a stable H-bond. These molecules were selected
for further ab initio geometry optimization with the Har-
treeꢀFock algorithm at a 6-31G(d) level of theory. Dihe-
dral angles of the calculated structures fit well to the ideal
values for the βI-turn (Figure 1). Because the parent Asx-
turn is formed by a pseudo-10-membered ring and struc-
ture A clearly fulfilled the stringent criteria for assigning
a type I β-turn, we chose to approach the potential reverse
turn mimetics of type 1 incorporating a diazecine based
ring system. We herein present a highly practical synthetic
approach to 10-membered unsaturated lactams as βI-
turn mimetics, conformational investigations, and solid
phase supported application toward artificial neuropep-
tide analogues.
Figure 1. Design and molecular dynamics investigations.
Grubb’s ring-closing olefin metathesis has been proven
as an elegant technique for the synthesis of 10-membered
rings when cyclization through RCM was explored as an
alternative to the classic methods of lactam formation.10
We intended to take advantage of ring-closing olefin
metathesis to access the novel molecular scaffolds of
type 1.
Our initial investigations were directed to the synthe-
sis of the Asx-Pro-turn mimetic 6a starting from the
N-allylglycine derivative 2a, which could be easily prepared
by N-alkylation (Scheme 1). Coupling of Fmoc-protected
proline acid chloride11,12 with the secondary amine 2a led
to the synthetic intermediate 3a. Subsequent N-deprotec-
tion and coupling with Fmoc-protected C-allylglycine acid
chloride afforded the cyclization precursor 5a. Ring clo-
sure metathesis was performed using a second generation
Grubbs catalyst in refluxing dichloromethane to give
access to the cyclic olefin 6a in 41% yield. The control of
cis/trans-geometry in generating double bonds of medium
size, particularly 10-membered rings, is difficult and hard
to predict13 when the ratios of E/Z-isomers can be influ-
enced by reaction temperature10 or groups neighboring the
olefins asdescribedby Grubbs.13 Some publications report
the formation of only the trans-isomer,3a,14 while others
observe the generation of a cis-double bond exclusively.15
For our 10-membered system, careful NMR analysis un-
ambiguously proved the structure of 6a with a diagnostic
3J-coupling of 9.9 Hz for the cis-alkenyl partial structure
(for trans-configuration, a coupling constant >15 Hz
would be expected).16 To demonstrate the versatility of
the synthesis, the tyrosine analog 6b was prepared
(4) (a) Kahn, M.; Chen, B. Tetrahedron Lett. 1987, 28, 1623–1626. (b)
Kahn, M.; Wilke, S.; Chen, B.; Fujita, K. J. Am. Chem. Soc. 1988, 110,
1638–1639. (c) Ball, J. B.; Alewood, P. F. J. Mol. Recog. 1990, 2, 55–64.
(d) Hinds, M. G.; Welsh, J. H.; Brennand, D. M.; Fisher, J.; Glennie,
M. J.; Richards, N. G. J.; Turner, D. L.; Robinson, J. A. J. Med. Chem.
1991, 34, 1777–1789. (e) Hanessian, S.; McNaughton-Smith, G.; Lombart,
H.-G.; Lubell, W. D. Tetrahedron 1997, 38, 12789–12854. (f) Fink,
B. E.; Kym, P. R.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1998, 120,
4334–4344. (g) Souers, A. J.; Virgilio, A. A.; Rosenquist, A.; Fenuik, W.;
Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 1817–1825. (h) Eguchi, M.;
Lee, M. S.; Nakanishi, H.; Stasiak, M.; Lovell, S.; Kahn, M. J. Am.
Chem. Soc. 1999, 121, 12204–12205. (i) Haskell-Luevano, C.;
Rosenquist, A.; Souers, A.; Khong, K. C.; Ellman, J. A.; Cone, R. D.
J. Med. Chem. 1999, 4380–4387. (j) Souers, A. J.; Ellman, J. A. Tetra-
hedron 2001, 7431–7448. (k) Qiu, W.; Gu, X.; Soloshonok, V. A.;
Carducci, M. D.; Hruby, V. J. Tetrahedron Lett. 2001, 42, 145–148. (l)
Eguchi, M.; Lee, M. S.; Stasiak, M.; Kahn, M. Tetrahedron Lett. 2001,
1237–1239. (m) Wang, W.; Xiong, C.; Hruby, V. J. Tetrahedron Lett.
2001, 18, 3159–3161. (n) Freidinger, R. M. J. Med. Chem. 2003, 46 (26),
5553–5566. (o) Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Tetrahedron
Lett. 2003, 44, 7655–7658. (p) Jeanotte, G.; Lubell, W. D. J. Am. Chem.
Soc. 2004, 126, 14334–14335. (q) Kaul, R.; Surprenant, S.; Lubell, W. D.
ꢀ
J. Org. Chem. 2005, 10, 3838–3844. (r) Stepien, A.; Loska, R.; Cmoch,
P.; Stalinsky, K. Synlett 2005, 1, 83–86. (s) Pawar, V. G.; De Borggraeve,
ꢀ
W. M.; Maes, V.; Tourwe, D. A.; Compernolle, F.; Hoornaert, G. J.
Tetrahedron Lett. 2005, 1707–1710. (t) Surprenant, S.; Lubell, W. D.
Org. Lett. 2006, 13, 2851–2854. (u) Albericio, F.; Arvidson, P. I.; Bisetty,
K.; Giralt, E.; Govender, T.; Jali, S.; Kongsaeree, P.; Kruger, H. G.;
Prabpai, S. Chem. Biol. Drug Des. 2008, 71, 125–130. (v) Ko, E.; Burgess,
K. Org. Lett. 2011, 5, 980–983.
(5) (a) Hutchinson, E. G.; Thornton, J. M. Protein Sci. 1994, 3, 2207–
2216. (b) Guruprasad, K.; Rajkumar, S J. Biosci. 2000, 25, 143–156.
(6) (a) Mcharfi, M.; Aubry, A.; Boussard, G; Marraud, M. Eur.
Biophys. J. 1986, 14, 43–51. (b) Imperiali, B.; Shannon, K. L. Biochem-
istry 1991, 30, 4374–4380.
(11) Beyermann, M.; Bienert, M.; Niedrich, H.; Carpino, L. A.;
Sadat-Aalaee, D. J. Org. Chem. 1990, 55, 721–728.
(12) Oku, A.; Yamaura, Y.; Harada, T. J. Org. Chem. 1986, 52, 3732–
3734.
(13) Mohapatra, D. K.; Ramesh, D. K.; Giardello, M. A.;
Chorghade, M. S.; Gurjar, M. K.; Grubbs, R. H. Tetrahedron Lett.
2007, 48, 2621–2625.
(7) Richardson, J. S. Adv. Protein Chem. 1981, 34, 167–339.
€
(8) (a) Bieraugel, H.; Jansen, P. T.; Schoemaker, H. E.; Hiemstra, H.;
van Maarseveen, J. H. Org. Lett. 2002, 16, 2673–2674. (b) David, O.;
Meester, W. J. N.; Bieraugel, H.; Schoemaker, H. E.; Hiemstra, H.; van
(14) Srihari, P.; Kumaraswamy, B.; Somaiah, R.; Yadav, J. S. Synth-
esis 2010, 1039–1045.
€
Maarseveen, J. H. Angew. Chem., Int. Ed. 2003, 42, 4373–4375.
(9) Hoffmann, T.; Lanig, H.; Waibel, R.; Gmeiner, P. Angew. Chem.,
Int. Ed. 2001, 40, 3361–3364.
(15) (a) Hoffmann, T.; Waibel, R.; Gmeiner, P. J. Org. Chem. 2003,
68, 62–69. (b) Szostak, M.; Aube, J. Org. Lett. 2009, 11, 3878–3881.
(16) (a) Smith, G. V.; Kriloff, H. J. Am. Chem. Soc. 1963, 85, 2016–
2017. (b) Pawar, M. D. J. Am. Chem. Soc. 1996, 118, 12821–12825.
ꢀ
€
€
(10) Furstner, A.; Muller, T. Synlett 1997, 8, 1010–1012.
Org. Lett., Vol. 13, No. 13, 2011
3503