o
Table 2 tT, tT and triplet kET(T1) data at 298 K
tTo/ms
tT/ms
kET/sꢂ1
2.1 ꢁ 104
1.1 ꢁ 105
5.6 ꢁ 107
2+
MCO2ZnP
DCO2ZnP
TCO2ZnP
125
603
617
MCO2ZnP-(Pd3
2+
DCO2ZnP-(Pd32+
)
35
8.8
0.072
)
)
2
TCO2ZnP-(Pd3
4
2+
magnitude per Pd3 complexation. Since the Forster theory
¨
Scheme 2
Table 1 tF, tF and singlet kET(S1) data at 298 and 77 K
does not apply to triplet energy transfer (but the Dexter
double electron exchange theory does),1,13 the J integral alone
cannot explain the very large acceleration for kET(S1).
While the exciton energy migration across energy donors is
well known,1 this same exciton behaviour for acceptors is not.
Is there an exciton effect on kET? This needs to be explored in
detail in order to explain this current impressive acceleration
in kET with the number of acceptors.
o
tF/ns
kET/nsꢂ1
298 K
77 K
298 K
77 K
MCO2ZnP
1.78 ꢃ 0.01
1.74 ꢃ 0.01
1.83 ꢃ 0.05
0.78 ꢃ 0.05
1.65 ꢃ 0.02
0.17 ꢃ 0.02
1.59 ꢃ 0.01
1.10 ꢃ 0.25
2.85 ꢃ 0.06
0.29 ꢃ 0.05
2.19 ꢃ 0.01
o0.1
—
0.016
—
0.73
—
—
0.28
—
3.1
—
410
2+
MCO2ZnP-(Pd3
DCO2ZnP
DCO2ZnP-(Pd3
TCO2ZnP
TCO2ZnP-(Pd3
)
2+
)
PDH thanks the Natural Sciences and Engineering
Research Council of Canada for funding and the Agence
National de la Recherche for the grant of a Research Chair
of Excellence.
2
2+
)
5.3
4
according to kET = (1/te) ꢂ (1/teo) where te and teo are the
emission lifetimes of the donor in the presence and absence of
energy acceptor, respectively.1 First, kET(S1) increases at 77 K
contrasting with previous data on cofacial bis-etio-porphyrins
similar to that shown in Scheme 2.13 Here, the donor–acceptor
systems are help by electrostatic interactions whereas the cofacial
bis-etio-porphyrins are more rigidly held by covalent bonds with
Notes and references
1 (a) P. D. Harvey, C. Stern and R. Guilard, in Handbook of
Porphyrin Science With Applications to Chemistry, Physics,
Materials Science, Engineering, Biology and Medicine, ed.
K. M. Kadish, K. M. Smith and R. Guilard, World Scientific
Publishing, Singapore, 2011, pp. 1–180; (b) P. D. Harvey, in
The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 2003, vol. 18, ch, 113.
2 E. Baranoff, J.-P. Collin, L. Flamigni and J.-P. Sauvage, Chem.
Soc. Rev., 2004, 33, 147.
3 (a) J. S. Connolly and J. R. Bolton, in Photoinduced Electron
Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam,
The Netherlands, 1988, part D, pp. 303–393; (b) S. Fukuzumi and
D. M. Guldi, in Electron Transfer in Chemistry, ed. V. Balzani,
Wiley-VCH, Weinheim, Germany, 2001, vol. 2, pp. 270-337.
4 L. Sanchez, N. Martin and D. M. Guldi, Angew. Chem., Int. Ed.,
2005, 44, 5374.
5 F. D’Souza, S. Gadde, Amy L. Schumacher, Melvin E. Zandler,
Atula S. D. Sandanayaka, Y. Araki and O. Ito, J. Phys. Chem. C,
2007, 111, 11123.
6 (a) P. J. F. de Rege, S. A. Williams and M. J. Therien, Science, 1995,
269, 1409; (b) J. L. Sessler, B. Wang, S. L. Springs and C. T. Brown, in
Comprehensive Supramolecular Chemistry, ed. Y. Murakami,
Pergamon Press, Oxford, 1996, vol. 4, pp. 311–336;
2+
the spacer. Upon cooling, the RCO2ꢂꢀꢀꢀPd3 interactions get
stronger and the assemblies are in a more rigid environment.
Second, kET(S1) increases going from MCO2ZnP-(Pd32+) to
DCO2ZnP-(Pd32+)2 to TCO2ZnP-(Pd32+)4. This trend appears
to be due to the overlap integral J. As the number of acceptors
increases, J is bound to increase. However, one expects a B2- and
B4-fold increase in kET(S1), respectively, but these are much
larger. In an attempt to shine some light onto this question,
the triplet state behaviour was studied as well. Because the
donor porphyrin is not phosphorescent at 298 K, transient
absorption spectroscopy was used to extract kET(T1) (Fig. 6 for
DCO2ZnP-(Pd32+)2 for example and ESIz).
2+
The transient absorption spectra for DCO2ZnP-(Pd3
)
2
and DCO2ZnP are identical meaning that the transient
(c) J. M. Hodgkiss, N. H. Damrauer, S. Presse, J. Rosenthal and
´
Daniel G. Nocera, J. Phys. Chem. B, 2006, 110, 18853.
T1–Tn signal belongs to the central unit. The T1 lifetimes
obtained from the transient decays indicate a large decrease
2+
7 (a) J. L. Sessler, E. Karnas, S. K. Kim, Z. P. Ou, M. Zhang, Karl
M. Kadish, K. Ohkubo and S. Fukuzumi, J. Am. Chem. Soc.,
2008, 130, 15256; (b) B. Grimm, E. Karnas, M. Brettreich,
K. Ohta, A. Hirsch, Dirk M. Guldi, T. Torres and J. L. Sessler,
J. Phys. Chem. B, 2010, 114, 14134.
8 (a) A. Prodi, Cornelis J. Kleverlaan, M. Teresa Indelli and
Franco Scandola, Inorg. Chem., 2001, 40, 3498; (b) P. J. Stang,
J. Fan and B. Olenyuk, Chem. Commun., 1997, 1453.
upon complexation with Pd3
o
(Table 2). The kET(T1)’s
(kET = (1/te) ꢂ (1/te )) show a large increase going from
2+
MCO2ZnP-(Pd32+) to DCO2ZnP-(Pd3
)
to TCO2ZnP-
2
(Pd32+)4. Again, kET increases by approximately an order of
9 V. Kral, Stacy L. Springs and J. L. Sessler, J. Am. Chem. Soc.,
´
1995, 117, 8881.
10 (a) R. Provencher, Khin T. Aye, M. Drouin, J. Gagnon,
N. Boudreault and P. D. Harvey, Inorg. Chem., 1994, 33,
3689; (b) P. D. Harvey and R. Provencher, Inorg. Chem., 1993, 32, 61.
11 S. M. Aly, C. Ayed, C. Stern, R. Guilard, A. S. Abd-El-Aziz and
P. D. Harvey, Inorg. Chem., 2008, 47, 21.
12 T. Forster, Ann. Phys., 1948, 2, 55.
¨
13 S. Faure, C. Stern, R. Guilard and P. D. Harvey, J. Am. Chem.
Soc., 2004, 126, 1253.
14 K. A. Connors, Binding Constants: The Measurements of
Molecular Complex Stability, J. Wiley & Sons, New York, 1987.
15 S. Faure, C. Stern, E. Espinosa, R. Guilard and P. D. Harvey,
Chem.–Eur. J., 2005, 11, 3469.
Fig. 6 Transient spectrum of DCO2ZnP-(Pd32+)2 in methanol at 298 K
exc = 355 nm. The pump and probe pulse delay times are in the inset.
l
c
6074 Chem. Commun., 2011, 47, 6072–6074
This journal is The Royal Society of Chemistry 2011