Scheme 1. General Method for the Synthesis of Heteroenyne-allenes 6
Nigellastrum Bunge are acetylcholinesterase inhib-
itors.12 This heterocycle and its derivatives have also
been evaluated in electroluminescent devices and or-
ganic dyes.13 The widespread applications of quina-
zolinones in medicinal and materials chemistry have
triggered considerable synthetic efforts to construct
these ring systems.14
One important building block for the synthesis of qui-
nazolinones 1 and their derivatives is a 4(3H)-quinazolini-
mine scaffold 2 (Figure 1).15a Note that the ring system 2 is
featured in compounds that exhibit cholinesterase inhib-
itory15f,g,n and antiproliferative activities.16 Several meth-
ods to synthesize 2 are available in the literature.15 A single
step synthesis of quinazolinimines 2 has been reported in a
three-component reaction between a carbonyl compound,
amine, and 2-azido-5-nitro-benzonitrile.17 However, none
of the reported methods have been optimized and exam-
ined for versatility to construct a variety of functionalized
4(3H)-quinazolinimine scaffolds in a general way. Further-
more, some of the existing protocols require long reaction
times,15a high temperatures,15d special setup, and workup
conditions15f,n and produce low yields.15g,o During our
attempts to induce a formal [4 þ 2] cyclization from cyano-
ene-carbodiimides,18 we discovered a new and alternative
method to build 2 in the presence of a hydrogen halide,
generated in situ from the reaction of a Lewis acid with
trace water, which was further subjected to an optimiza-
tion study. The advantages of this newly discovered meth-
od are the following: (1) It is highly versatile and allows the
construction of a quinazoliniminium ring carrying a wide
range of different substitutions, notably on N-3. (2) It
provides access to 2-halo quinazoliniminiums that have
not been previously explored. The presence of a halogen
atom at C-2 offers possibilities to exploit this site into fur-
ther chemistry for additional functionalization. As men-
tioned above, functionalization at N-3 or/and C-2 posi-
tions of these ring systems is extremely important from a
drug discovery viewpoint, and in addition, (3) the reaction
is carried out at room temperature and requires no special
setup/workup to isolate the quinazoliniminium product.
2-((Phenylimino)methyleneamino)-benzonitrile (6a)(R1 =
R2 = R3 = R4 = R5 = H) was prepared as reported in the
literature (Scheme 1).19 Briefly, the aza-Wittig reaction of
2-aminobenzonitrile (3a) (R1 = R2 = H) with triphenyl-
phosphine dibromide in the presence of triethylamine yielded
the iminophosphorane 4a (R1 = R2 = H) (77%) which
upon treatment with isocyanate 5a (R3 = R4 = R5 = H)
generated 6a (67%).
(12) Zheng, X.-y.; Zhang, Z.-j.; Chou, G.-x.; Wu, T.; Cheng, X.-m.;
Wang, C.-h.; Wang, Z.-t. Arch. Pharm. Res. 2009, 32, 1245.
(13) (a) Enokida, T.; Suda, Y. JP, 1993-17334 06228547, 1994.
(b) Schefczik, E. DE, 1979-2930081 930081, 1981. (c) Schefczik, E. DE,
1974. (d) Hoppe, H.; Bujard, P.; Mueller, M.; Reichert, H. WO, 2005-EP53214
2006008239, 2006. (d) Nakatsuka, M.; Ishida, T.; Shimamura, T. JP, 2000-209223
20022025775, 2002.
(14) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J.
Tetrahedron 2005, 61, 10153.
(15) (a) Szczepankiewicz, W.; Suwinski, J. Chem. Heterocycl. Compd.
2001, 36, 809. (b) Chern, J. W.; Tao, P. L.; Yen, M. H.; Lu, G. Y.; Shiau,
C. Y.; Lai, Y. J.; Chien, S. L.; Chan, C. H. J. Med. Chem. 1993, 36, 2196.
(c) Chern, J. W.; Shiau, C. Y.; Lu, G. Y. Bioorg. Med. Chem. Lett. 1991,
1, 571. (d) Jaen, J. C.; Gregor, V. E.; Lee, C.; Davis, R.; Emmerling, M.
Bioorg. Med. Chem. Lett. 1996, 6, 737. (e) Anderskewitz, R.; Bauer, R.;
Bodenbach, G.; Gester, D.; Gramlich, B.; Morschhaeuser, G.; Birke,
F. W. Bioorg. Med. Chem. Lett. 2005, 15, 669. (f) Decker, M.; Krauth,
F.; Lehmann, J. Bioorg. Med. Chem. 2006, 14, 1966. (g) Decker, M.
J. Med. Chem. 2006, 49, 5411. (h) Jung, F. H.; Pasquet, G.; Van der
Brempt, C. L.; Lohmann, J.-J. M.; Warin, N.; Renaud, F.; Germain, H.;
De Savi, C.; Roberts, N.; Johnson, T.; Dousson, C.; Hill, G. B.;
Mortlock, A. A.; Heron, N.; Wilkinson, R. W.; Wedge, S. R.; Heaton,
S. P.; Odedra, R.; Keen, N. J.; Green, S.; Brown, E.; Thompson, K.;
Brightwell, S. J. Med. Chem. 2006, 49, 955. (i) Abderrahim, R.; Boujlel,
K. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 79. (j) Vovk, M. B.
Russ. J. Org. Chem. 2007, 43, 312. (k) Langer, P.; Bodtke, A. Tetra-
hedron Lett. 2003, 44, 5965. (l) Bodtke, A.; Langer, P. Tetrahedron Lett.
2004, 45, 8741. (m) Divisova, H.; Havlisova, H.; Borek, P.; Pazdera, P.
Molecules 2000, 5, 1166. (n) Decker, M. Eur. J. Med. Chem. 2005, 40,
Treatment of 6a with chlorotrimethylsilane (TMSCl)
produced a single product in very good yield. The structure
elucidation of this product was carried out by a combina-
tion of COSY, HSQC, and HMBC NMR experiments and
high resolution mass spectrometry, which confirmed the
presence of a 2-chloro-3-phenyl-4(3H)-quinazolinimine
scaffold 7a (Scheme 2, see Supporting Information for
discussion of 2D spectra). The product was insoluble in
most organic solvents such as methylene chloride, ethyl
acetate, acetone, and hexane (except methanol), which
suggested that the isolated compound may be the hydro-
chloride salt of the 2-chloro-3-aryl-4(3H)-quinazolinimine
7a. Under the acidic conditions employed, the imines are
expected to be protonated. The formation of the hydro-
chloride salt 7a was further supported by the NMR signal
€
€
305. (o) Lettau, H.; Buge, A.; Harenberg, P.; Hartel, S.; Jarmer, K.;
€
Kock, K.; Peppel, W.; Schikora, A.; Schneider, R.; Weber, C.; Nuhn, P.
Pharmazie 1993, 48, 410.
(16) Perchellet, J.-P. H.; Waters, A. M.; Perchellet, E. M.; Naganaboina,
V. K.; Chandra, K. L.; Desper, J.; Rayat, S. Anticancer Res. 2011,
31:8 in press.
(18) (a) Schmittel, M.; Rodriguez, D.; Steffen, J.-P. Angew. Chem.,
Int. Ed. 2000, 39, 2152. (b) Schmittel, M.; Steffen, J.-P.; Engels, B.;
Lennartz, C.; Hanrath, M. Angew. Chem., Int. Ed 1998, 37, 2371.
(19) Taylor, E. C.; Patel, M. J. Heterocycl. Chem. 1991, 28, 1857.
(17) Erba, E.; Pocar, D.; Trimarco, P. Tetrahedron 2005, 61, 5778.
Org. Lett., Vol. 13, No. 14, 2011
3719