Molecular Diversity of Three-Component Reactions
(2.0 mmol) and dimethyl acetylenedicarboxylate (0.284 g,
2.0 mmol) in ethanol (5 mL) was stirred at room temperature for
10 min. The aromatic aldehyde (2.0 mmol) was then added, and the
mixture was stirred at room temperature for 48 h. The resulting
precipitates were collected and washed with cold ethanol to give
7.8 Hz, 2 H, Ar), 7.29–7.26 (m, 4 H, Ar), 7.24 (d, J = 6.6 Hz, 3 H,
Ar), 7.11 (t, J = 7.8 Hz, 1 H, Ar), 5.75 (s, 1 H, CH), 3.76 (s, 3 H,
OCH3) ppm. 13C NMR (150 MHz, CDCl3): δ = 165.2, 162.9, 156.1,
136.2, 135.0, 129.0, 128.7, 128.6, 127.5, 125.9, 122.4, 112.9, 61.7,
52.1 ppm. IR (KBr): ν = 3209, 2956, 1681, 1596, 1498, 1458, 1382,
˜
1
pure white solid 1a (71%). M.p. 160–162 °C. H NMR (600 MHz,
1303, 1234, 1196, 1131, 996, 928, 833, 759 cm–1. MS: m/z (%) =
CDCl3): δ = 7.62 (s, 1 H, Ar), 7.34–7.32 (m, 2 H, Ar), 7.29 (d, J = 308.77 (100) [M – 1]+. C18H15NO4 (309.32): calcd. C 69.89, H 4.89,
7.8 Hz, 3 H, Ar), 7.09 (br., 1 H, Ar), 7.06 (d, J = 7.8 Hz, 2 H, Ar),
4.62 (d, J = 6.6 Hz, 1 H, CH), 4.26 (s, 1 H, OH), 3.98 (d, J =
6.0 Hz, 1 H, CH), 3.74 (s, 3 H, OCH3), 3.52 (s, 3 H, OCH3), 3.45
(s, 3 H, OCH3), 3.43 (s, 3 H, OCH3), 2.31 (s, 3 H, CH3) ppm. 13C
NMR (150 MHz, CDCl3): δ = 171.2, 170.1, 166.4, 164.7, 147.7,
138.3, 136.4, 135.2, 129.4, 129.1, 128.4, 99.8, 85.4, 53.3, 52.3, 52.1,
N 4.53; found C 69.64, H 5.27, N 4.16.
CCDC-804511 (1b), -804512 (1d), -805708 (2i), -805782 (3c),
-805709 (3h) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
51.6, 50.4, 37.6, 21.1 ppm. IR (KBr): ν = 3472, 2955, 1756, 1696,
˜
Supporting Information (see footnote on the first page of this arti-
cle): Molecular structures of 1b to 3c; experimental procedures and
spectroscopic data for all new compounds.
1596, 1498, 1441, 1337, 1236, 1159, 1116, 1059, 975, 892, 854,
809 cm–1. MS: m/z (%) = 496.71 (100) [M – 1]+. C26H27NO9
(497.49): calcd. C 62.77, H 5.47, N 2.82; found C 62.46, H 5.71, N
2.57.
Acknowledgments
General Procedure for the Synthesis of Polysubstituted Dihydropyr-
idines: Under nitrogen a solution of arylamine (2.0 mmol) and di-
methyl acetylenedicarboxylate (0.284 g, 2.0 mmol) in absolute etha-
nol (5 mL, distilled before use from Mg) was stirred at room tem-
perature for 10 min. The aromatic aldehyde (2.0 mmol) in absolute
ethanol (2 mL) was then added by syringe, and the mixture was
stirred at room temperature for 48 h. The resulting precipitates
were collected and washed with cold ethanol to give pure yellow
This work was financially supported by the National Natural Sci-
ence Foundation of China (Grant No. 20972132).
[1] a) Z. Rappoport (Ed.), The Chemistry of Enamines, John
Wiley & Sons, New York, 1994, part 1; b) P. Lue, J. V.
Greenhill, Adv. Heterocycl. Chem. 1997, 67, 215; c) A. Z. Elas-
sara, A. A. El-Khair, Tetrahedron 2003, 59, 8463–8480.
[2] a) M. C. Bagley, J. W. Dale, J. Bower, Chem. Commun. 2002,
1682; b) A. Valla, B. Valla, D. Cartier, R. Le Guillou, R. Labia,
P. Potier, Tetrahedron Lett. 2005, 46, 6671–6674; c) S. J. Tu, B.
Jiang, R. H. Jia, J. Y. Zhang, Y. Zhang, C. S. Yao, F. Shi, Org.
Biomol. Chem. 2006, 4, 3664.
[3] a) A. R. Katritzky, A. E. Hayden, K. Kirichenko, P. Pelphrey,
Y. Ji, J. Org. Chem. 2004, 69, 5108–5111; b) S. Cunha, F. Dam-
asceno, J. Ferrari, Tetrahedron Lett. 2007, 48, 5795; c) S. Kiku-
chi, M. Iwai, H. Murayama, S. Fukuzaka, Tetrahedron Lett.
2008, 49, 114–116.
[4] a) R. K. Vohra, C. Bruneau, J. Renaud, Adv. Synth. Catal.
2006, 348, 2571–2574; b) A. Kumar, R. A. Maurya, Tetrahe-
dron 2008, 64, 3477–3482; c) J. Moreau, A. Duboc, C. Hubert,
J.-P. Hurvois, J. L. Renaud, Tetrahedron Lett. 2007, 48, 8647–
8650; d) H. Sirijindalert, K. Hansuthirakul, P. Rashatasakhon,
M. Sukwattanasinitt, A. Ajavakom, Tetrahedron 2010, 66,
5161–5167.
[5] a) B. Rechsteiner, F. Texier-Boullet, J. Hamelin, Tetrahedron
Lett. 1993, 34, 5071–5074; b) C. J. Valduga, A. Squizani, H. S.
Braibante, M. E. F. Braibante, Synthesis 1998, 1019–1022; c)
A. Arcadi, G. Bianchi, S. Di Giuseppe, F. Marinelli, Green
Chem. 2003, 5, 64–67; d) A. R. Khosropour, M. M. Khodaei,
M. Kookhazadeh, Tetrahedron Lett. 2004, 45, 1725–1728.
[6] a) R. Huisgen, K. Herbig, K. Siegel, H. Huber, Chem. Ber.
1966, 99, 2526; b) R. Huisgen, Z. Chem. 1968, 8, 290–298; c)
R. Huisgen, M. Morikawa, K. Herbig, E. Brunn, Chem. Ber.
1967, 100, 1094–1106; d) O. Diels, K. Alder, Justus Liebigs
Ann. Chem. 1932, 498, 16–49.
[7] a) V. Nair, C. Rajesh, A. V. Vinod, S. Bindu, A. R. Sreekanth,
J. S. Mathen, L. Balagopal, Acc. Chem. Res. 2003, 36, 899–907;
b) V. Nair, R. S. Menon, A. Sreekanth, N. Abhilash, A. T. Biju,
Acc. Chem. Res. 2006, 39, 520–530; c) K. Mohn, A. Kanie, Y.
Horiguchi, K. Isobe, Heterocycles 1999, 51, 2377; d) S. Matsu-
moto, T. Mori, M. Akazome, Synthesis 2010, 3615–3622.
[8] a) T. Glotova, M. Dvorko, I. Ushakov, N. Chipanina, O. Kazh-
eva, A. Chekhlov, O. Dyachenko, N. Gusarova, B. Trofimov,
Tetrahedron 2009, 65, 9814–9818; b) A. Ziyaei-Halimehjani,
M. R. Saidi, Tetrahedron Lett. 2008, 49, 1244–1248; c) X. Li,
J. Y. Wang, W. Yu, L. M. Wu, Tetrahedron 2009, 65, 1140–1146;
d) I. Yavari, M. J. Bayat, M. Sirouspour, S. Souri, Tetrahedron
2010, 66, 7995–7999.
1
solid 2a (69%). M.p. 169–170 °C. H NMR (600 MHz, CDCl3): δ
= 7.36 (br. s, 2 H, Ar), 7.20 (br. s, 2 H, Ar), 7.16 (br. s, 2 H, Ar),
6.88 (br. s, 2 H, Ar), 4.99 (s, 1 H, CH), 3.80 (s, 3 H, OCH3), 3.65
(s, 6 H, OCH3), 3.46 (s, 6 H, OCH3), 2.36 (s, 3 H, CH3) ppm. 13C
NMR (150 MHz, CDCl3): δ = 165.9, 163.6, 158.7, 141.8, 140.0,
137.2, 134.4, 130.0, 129.5, 129.0, 114.0, 106.1, 55.2, 52.5, 52.0, 36.3,
21.3 ppm. IR (KBr): ν = 3008, 2951, 1748, 1706, 1643, 1595, 1508,
˜
1439, 1328, 1218, 1115, 1079, 1030, 975, 851 cm–1. MS: m/z (%) =
508.36 (100) [M – 1]+. C27H27NO9 (509.5): calcd. C 63.65, H 5.34,
N 2.75; found C 63.41, H 5.63, N 2.69.
General Procedure for the Synthesis of Polysubstituted Dihydropyr-
idines from the Acid-Catalyzed Dehydration of 2-Hydroxyhydropyr-
idines: A solution of the 2-hydroxyhydropyridines (1.0 mmol) and
p-toluenesulfonic acid (0.5 mmol) in ethanol (10 mL) was refluxed
for about 1 h. The solution was then concentrated to half the vol-
ume. The resulting precipitates were collected and washed with cold
ethanol to give pure light-yellow solid 2g (95%). M.p. 185–186 °C.
1H NMR (600 MHz, CDCl3): δ = 8.40 (s, 1 H, Ar), 8.14 (d, J =
7.8 Hz, 1 H, Ar), 7.80 (d, J = 6.6 Hz, 1 H, Ar), 7.54 (t, J = 7.2 Hz,
1 H, Ar), 7.44–7.41 (m, 5 H, Ar), 5.20 (s, 1 H, CH), 3.67 (s, 6 H,
OCH3), 3.45 (s, 6 H, OCH3) ppm. 13C NMR (150 MHz, CDCl3):
δ = 165.2, 163.0, 148.7, 146.7, 142.6, 136.6, 134.0, 130.3, 130.2,
129.5, 129.1, 123.0, 122.3, 105.1, 52.7, 52.2, 37.2 ppm. IR (KBr): ν
˜
= 3003, 2952, 1747, 1709, 1648, 1594, 1526, 1489, 1437, 1318, 1223,
1117, 1078, 978, 946, 901, 856, 814, 770 cm–1. MS: m/z (%) = 509.48
(100) [M – 1]+. C25H22N2O10 (510.45): calcd. C 58.82, H 4.34, N
5.49; found C 58.74, H 4.49, N 5.23.
General Procedure for the Synthesis of Polysubstituted Pyrrolidin-
ones: In a 50 mL flask, a solution of an aromatic aldehyde
(2.0 mmol), an arylamine (2.0 mmol), and p-toluenesulfonic acid
(0.4 mmol) in ethanol (5 mL) was stirred at room temperature for
approximately 30 min. Acetylenedicarboxylate (2.0 mmol) was then
added, and the mixture was stirred at room temperature for 48 h.
The resulting precipitates were collected and washed with cold eth-
anol to give pure light yellow solid 3a (62%). M.p. 180–182 °C. 1H
NMR (600 MHz, CDCl3): δ = 8.97 (s, 1 H, OH), 7.47 (d, J =
Eur. J. Org. Chem. 2011, 2981–2986
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2985