Organometallics
ARTICLE
Complex (aS)-10: yellow solid; mp 150.0ꢀ151.2 °C(dec); [R]20D ꢀ49
(c 0.25, CHCl3); IR (direct irradiation) ν 3055, 2921, 2851, 2814, 1710,
1606, 1571, 1493, 1461, 1390, 1279, 1239, 1203, 1188, 1151, 1081, 964,
903, 859, 818, 744, 692 cmꢀ1; 1H NMR (400 MHz, CDCl3, TMS) δ 3.76
(s, 3H), 6.68 (ddd, J = 2.8, 6.0, 8.4 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.90
(dt, J = 1.2, 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 7.16ꢀ7.17 (m, 2H),
7.25ꢀ7.40 (m, 5H), 7.43ꢀ7.47 (m, 1H), 7.55 (dt, J = 1.2, 8.0 Hz, 1H),
7.59ꢀ7.65 (m, 2H), 7.72 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.86
(d, J= 8.0 Hz, 1H), 8.10 (d, J= 8.0 Hz, 1H), 8.21 (d, J= 8.4 Hz, 1H), 8.48 (s,
1H), 11.82 (s, 1H); LRMS (ESI) m/e 700.2 [M+ ꢀ I]; HRMS (ESI) calcd
for [C35H25N3IOAu ꢀ I] requires 700.1663, found 700.1666 [M+ ꢀ I].
of China ((973)-2009CB825300), the Fundamental Research
Funds for the Central Universities, and the National Natural
Science Foundation of China for financial support (21072206,
20472096, 20872162, 20672127, 20821002, and 20732008).
’ REFERENCES
(1) (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403. (b)
Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211. (c) Jimꢀemez-Nꢀu~nez,
E.; Echavarren, A. M. Chem. Commun. 2007, 333–346. (d) F€urster, A.;
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–3449. (e) Hashmi,
A. S. K. Angew. Chem., Int. Ed. 2008, 47, 6754–6756. (f) Duschek, A.;
Kirsch, S. F. Angew. Chem., Int. Ed. 2008, 47, 5703–5705. (g) Bongers,
N.; Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178–2181. (h) Li, Z.;
Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265. (i) Arcadi, A.
Chem. Rev. 2008, 108, 3266–3325. (j) Jimꢀenez-Nꢀu~nez, E.; Echavarren,
A. M. Chem. Rev. 2008, 108, 3326–3350. (k) Gorin, D. J.; Sherry, B. D.;
Toste, F. D. Chem. Rev. 2008, 108, 3351–3378. (l) Shapiro, N. D.; Toste,
F. D. Synlett 2010, 2010, 675–691.
(2) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986,
108, 6405–6406.
(3) For recent reviews, see: (a) Widenhoefer, R. A. Chem.—Eur. J.
2008, 14, 5382–5391. (b) Sengupta, S.; Shi, X. D. ChemCatChem 2010,
2, 609–619, and refs 1g and 1h.
(4) (a) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 18002–18003. (b) LaLonde, R. L.; Sherry,
B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452–2453.
(c) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007,
317, 496–499. (d) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett.
2007, 9, 2887–2889. (e) Zhang, Z.; Widenhoefer, R. A. Angew. Chem.,
Int. Ed. 2007, 46, 283–285. (f) Zhang, Z.; Bender, C. F.; Widenhoefer,
R. A. J. Am. Chem. Soc. 2007, 129, 14148–14149. (g) Kleinbeck, F.;
Toste, F. D. J. Am. Chem. Soc. 2009, 131, 9178–9179.
(5) (a) Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagne, M. R.
Angew. Chem., Int. Ed. 2007, 46, 6670–6673. (b) Luzung, M. R.;
Mauleon, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402–12403.
(c) Alonso, I.; Trillo, B.; Lopez, F.; Montserrat, S.; Ujaque, G.; Castedo,
L.; Lledos, A.; Mascarenas, J. L. J. Am. Chem. Soc. 2009, 131, 13020–
13030. (d) Gonzalez, A. Z.; Toste, F. D. Org. Lett. 2010, 12, 200–203.
(6) (a) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M.
Organometallics 2005, 24, 1293–1300. (b) Chao, C. M.; Genin, E.;
Toullec, P. Y.; Gen^et, J. P.; Michelet, V. J. Organomet. Chem. 2009,
694, 538–545. (c) Chao, C. M.; Vitale, M. R.; Toullec, P. Y.; Gen^et, J. P.;
Michelet, V. Chem.—Eur. J. 2009, 15, 1319–1323. (d) Chao, C. M.;
Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem. Commun.
2009, 6988–6990. (e) Hashmi, A. S. K.; Hamzic, M.; Rominger, F.;
Bats, J. W. Chem.—Eur. J. 2009, 15, 13318–13322. (f) Wilckens, K.;
Uhlemann, M.; Czekelius, C. Chem.—Eur. J. 2009, 15, 13323–13326.
(g) Matsumoto, Y.; Selim, K. B.; Nakanishi, H.; Yamada, K.; Yamamoto,
Y.; Tomioka, K. Tetrahedron Lett. 2010, 51, 404–406.
Complex (aS)-11: pale yellow solid; mp 133.0ꢀ134.5 °C (dec); [R]20
D
ꢀ42 (c 0.25, CHCl3); IR (direct irradiation) ν 3055, 2923, 2853, 1700,
1611, 1576, 1505, 1458, 1390, 1308, 1241, 1202, 1098, 964, 870, 815,
742, 692 cmꢀ1; 1H NMR (400 MHz, CDCl3, TMS) δ 3.80 (s, 3H), 6.86
(ddd, J = 1.6, 6.0, 7.6 Hz, 1H), 7.15ꢀ7.26 (m, 4H), 7.29ꢀ7.34 (m, 3H),
7.36ꢀ7.41 (m, 2H), 7.46ꢀ7.55 (m, 4H), 7.58 (d, J = 8.4 Hz, 1H), 7.62
(d, J = 8.8 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.82
(d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.39
(s, 1H); LRMS (ESI) m/e 684.2 [M+ ꢀ I]; HRMS (ESI) calcd for
[C35H25N3IAu ꢀ I] requires 684.1714, found 684.1713 [M+ ꢀ I].
General Procedure for NHC-Au(I) Complex Catalyzed
Asymmetric Acetoxycyclization of 1,6-Enynes. A typical pro-
cedure is given below for the reactions shown in Table 2. To a solution of
NHC-Au(I) complex (5 mol %), 1,6-enyne 52a (33 mg, 0.1 mmol), and
AgX (0.005 mmol) in dry DCE (1.0 mL) was added dry acetic acid (115
μL, 2.0 mmol) as the nucleophile under an argon atmosphere. The
mixture was stirred at the proper temperature until 52a was completely
consumed by TLC monitoring. Then the reaction was quenched by
filtering through Celite with a thin pad of silica gel, and volatiles were
removed under reduced pressure. The residue was purified by silica gel
flash column chromatography to give 53a (eluent: petroleum ether/
EtOAc, 8:1) as a white solid.
General Procedure for NHC-Au(I) Complex Catalyzed En-
antioselective Oxidative Rearrangement of 1,6-Enynes. Un-
der an argon atmosphere, to a flame-dried Schlenk tube equipped with a
septum and stirring bar were added activated 4 Å MS (50 mg), NHC-
Au(I) complex (5 mol %), 1,6-enyne 52 (0.1 mmol), Ph2SO (30 mg, 0.15
mmol), and AgSbF6 (2 mg, 0.005 mmol) followed by the injection of the
corresponding drysolvent (1.0 mL). The mixture was stirredatthe proper
temperature until complete consumption of 52 by TLC monitoring
before quenching by filtering with a thin pad of silica gel. Then volatiles
were removed under reduced pressure, and the residue was purified by
silica gel flash column chromatography to give the oxidative product 56.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed descriptions of exper-
b
(7) A recent alternative approach of employing chiral counteranions
is very attractive for conducting asymmetric gold catalysis; see ref 4c and
Hashmi, A. S. K. Nature 2007, 449, 292–293.
imental procedures, spectral and analytical data for all new com-
pounds shown in schemes, figures, and tables, CIF files and X-ray
crystal data for 1, 2a, and 6, and chiral HPLC traces of
compounds 53, 54, and 56. This material is available free of
org.
(8) For selected books and reviews on NHC ligands, see: (a) Nolan,
S. P., Ed. N-Heterocyclic Carbenes in Synthesis; Wiley-VCH: Weinheim,
Germany, 2006. (b) Glorius, F. N-Heterocyclic Carbenes in Transition
Metal Catalysis; Springer: Berlin, 2007. (c) Bourissou, D.; Guerret, O.;
Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39–91. (d) Herrmann,
W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309. (e) Perry, M. C.;
Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951–961. (f) Kirmse, W.
Angew. Chem., Int. Ed. 2004, 43, 1767–1769. (g) Cesar, V.; Bellemin-
Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–636. (h)
Douthwaite, R. E. Coord. Chem. Rev. 2007, 251, 702–717. (i) K€uhl, O.
Chem. Soc. Rev. 2007, 36, 592–607. (j) Kantchev, E. A. B.; O’Brien, C. J.;
Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. (k) Diez-
Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612–3676.
(9) (a) Jafarpour, L.; Nolan, S. P. Adv. Organomet. Chem. 2000,
46, 181–222. (b) Weskamp, T.; Bohm, V. P. W.; Herrmann, W. A.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: Mshi@mail.sioc.ac.cn. Fax: 86-21-64166128.
’ ACKNOWLEDGMENT
We thank the Shanghai Municipal Committee of Science and
Technology (08dj1400100-2), National Basic Research Program
3868
dx.doi.org/10.1021/om2004404 |Organometallics 2011, 30, 3859–3869