activation was followed by subsequent CꢀC (Scheme 1c)7 or
CꢀN (Scheme 1d)8 bond formation to afford carbazoles.9
Recently, we reported a Pd-catalyzed domino reaction
of N-Ts-2-arylanilines with activated olefins that involved
a directed CꢀH activation, CꢀC bond formation, and
intramolecular conjugate addition reaction to generate di-
hydrophenanthridines in good to excellent yields (Scheme
2, route B).10 In this process, reactions proceededsmoothly
at room temperature via CꢀH activation followed by oxi-
dative CꢀC bond formation at the C20-position. Inspired
by this finding, we reasonedthat a carefully chosenoxidant
would promote the oxidation of palladacycle A followed
by reductive elimination of the so-obtained PdIV species
(B) with concomitant CꢀN bond formation,11 leading to a
carbazole product (Scheme 2, route A). Although an
analogous reaction using 2-arylanilines bearing a N-elec-
tron-withdrawing group (e.g., R = Ac, Scheme 1d) has
been demonstrated by Buchwald and co-workers, the
elevated temperature with the prolonged reaction time
reported therein may present limitations to the substrate
Scheme 2. Pd-Catalyzed Synthesis of N-Heterocycles from
2-Arylanilines through CꢀH Activation at the C20-Position
scope and practicality.8a,b Furthermore, a Pd0/PdII process12
has been put forward to account for the electronic influence
of the substrates examined.8a,b In contrast, Gaunt and co-
workers had demonstrated a related process that operates
at ambient temperature through a PdII/PdIV catalytic cycle
with 2-arylanilines bearing an electron-donating group
(e.g., R = Bn, Scheme 1d),8d though the costly use of
PhI(OAc)2 as the oxidant may appear less attractive
together with stoichiometric formation of a toxic bypro-
duct, i.e., PhI. While significant progress has been made in
transition-metal-catalyzed CꢀH amination by several
leading research groups,13ꢀ15 practical synthetic methods
for the construction of the carbazole system via catalytic
CꢀH amination using environmentally benign and inex-
pensive oxidants under mild conditions are yet to be
realized. In view of the prevalence of the carbazole motif
in bioactive alkaloids and electronic materials, such a
synthetic method is particularly valuable. Here, we report
a Pd-catalyzed intramolecular oxidative CꢀH amination
of N-Ts-2-arylanilines that involves a directed CꢀH acti-
vation followed by a subsequent CꢀN bond formation via
a PdII/PdIV process (R = Ts in Scheme 1d and route A in
Scheme 2), leading to carbazoles as valuable chemical enti-
ties. In particular, the reaction conditions described herein
significantly improved the efficiency and practicality of
carbazole formation through the use of Oxone as an envi-
ronmentally benign, nontoxic, easy-to-handle, and inex-
pensive oxidant, under mild conditions, to promote the
formation of PdIV species followed by CꢀN bond
(6) Selected examples of coupling reactions between CꢀX and NꢀH
bonds: (a) Zhou, Y.; Verkade, J. G. Adv. Synth. Catal. 2010, 352, 616. (b)
Ca’, N. D.; Sassi, G.; Catellani, M. Adv. Synth. Catal. 2008, 350, 2179. (c)
Kuwahara, A.; Nakano, K.; Nozaki, K. J. Org. Chem. 2005, 70, 413. (d)
Wakim, S.; Bouchard, J.; Blouin, N.; Michaud, A.; Leclerc, M. Org.
Lett. 2004, 6, 3413. (e) Lin, G.; Zhang, A. Tetrahedron 2000, 56, 7163. (f)
Boger, D. L.; Duff, S. R.; Panek, J. S.; Yasuda, M. J. Org. Chem. 1985,
50, 5782.
(7) Selected examples of coupling reactions between CꢀH and CꢀH
bonds: (a) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem.
€
2009, 74, 4720. (b) Schmidt, M.; Knolker, H.-J. Synlett 2009, 2421. (c)
ꢁ
Sridharan, V.; Martın, M. A.; Menendez, J. C. Eur. J. Org. Chem. 2009,
´
4614. (d) Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K.
J. Org. Chem. 2008, 73, 5022. (e) Matsubara, S.; Asano, K.; Kajita, Y.;
Yamamoto, M. Synlett 2007, 2055. (f) Sridharan, V.; Martın, M. A.;
´
ꢁ
Menendez, J. C. Synlett 2006, 2375. (g) Hagelin, H.; Oslob, J. D.;
€
Akermark, B. Chem.;Eur. J. 1999, 5, 2413. (h) Knolker, H.-J.; O’Sulli-
van, N. Tetrahedron 1994, 50, 10893 and refs 5f and 6e.
(8) Examples of coupling reactions between CꢀH and NꢀH bonds:
(a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 14560. (b) Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.;
Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (c) Li, B.-J.; Tian, S.-L.;
Fang, F.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (d) Jordan-
Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J.
Am. Chem. Soc. 2008, 130, 16184 and ref 7e. During the preparation of
this manuscript, Chang and co-workers reported an example of Cu-
catalyzed or metal-free synthesis of carbazoles from 2-benzenesulfona-
midobiphenyls; see: (e) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem.
Soc. 2011, 133, 5996. The reaction reported herein is believed to operate
through a radical mechanism where the Cu species serves as a Lewis acid
to activate the hypervalent iodine(III) reagent. In contrast, our reaction
proceeded smoothly in the presence of TEMPO, and the use of Oxone in
the absence of a Pd catalyst did not promote any reaction even at a high
temperature (80 °C).
(13) Selected reviews on CꢀH amination: (a) Armstrong, A.; Collins,
J. C. Angew. Chem., Int. Ed. 2010, 49, 2282. (b) Collet, F.; Dodd, R. H.;
Dauban, P. Chem. Commun. 2009, 5061. (c) Davies, H. M. L.; Manning,
J. R. Nature 2008, 451, 417. (d) Davies, H. M. L.; Long, M. S. Angew.
(9) Carbazole synthesis via decomposition of azide moieties and/or
nitrene transfer: (a) Smitrovitch, J. H.; Davies, I. W. Org. Lett. 2004, 6,
533. (b) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74,
€
Chem., Int. Ed. 2005, 44, 3518. (e) Muller, P.; Fruit, C. Chem. Rev. 2003,
ꢁ
6442. (c) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell,
103, 2905. (f) Dauban, P.; Dodd, R. H. Synlett 2003, 1571.
R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225. (d) Shou, W. G.; Li, J.;
Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847.
(10) Kim, B. S.; Lee, S. Y.; Youn, S. W. Chem.;Asian J. 2011, DOI:
10.1002/asia.201100024.
(14) Selected examples of Pd-catalyzed intermolecular amination of
aromatic CꢀH bonds: (through a nitrene intermediate): (a) Thu, H.-Y.;
Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (b) Ng, K.-H.;
Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. (c) Dick,
A. R.; Remy, M. S.; Kampf, J. W.; Sanford, M. S. Organometallics 2007,
27, 1365. (not using a nitrene source): (d) Xiao, B.; Gong, T.-J.; Xu, J.;
Liu, Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466. (e) Sun, K.; Li, Y.;
Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.
(15) Selected examples of Pd-catalyzed intramolecular amination of
aromatic CꢀH bonds: (a) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J.
Org. Chem. 2010, 75, 3900. (b) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am.
Chem. Soc. 2009, 131, 10806. (c) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc.
2008, 130, 14058. (d) Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. Synlett
2008, 3157. (e) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.;
Hiroya, K. Org. Lett. 2007, 9, 2931.
~
(11) For a review, see: (a) Muniz, K. Angew. Chem., Int. Ed. 2009, 48,
9412. For selected examples of reductive elimination of C-heteroatom
bonds from Pd(IV) intermediates, see: (b) Furuya, T.; Ritter, T. J. Am.
Chem. Soc. 2008, 130, 10060. (c) Fu, Y.; Li, Z.; Liang, S.; Guo, Q.-X.;
Liu, L. Organometallics 2008, 27, 3736. (d) Wang, G.-W.; Yuan, T.-T.;
Wu, X.-L. J. Org. Chem. 2008, 73, 4717. (e) Whitfield, S. R.; Sanford,
M. S. J. Am. Chem. Soc. 2007, 129, 15142. (f) Desai, L. V.; Malik, H. A.;
Sanford, M. S. Org. Lett. 2006, 8, 1141 and refs 8d, 14aꢀb, 14d, and
15bꢀc.
(12) For an example of CꢀH amination via a Pd0/PdII pathway, see:
Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
Org. Lett., Vol. 13, No. 14, 2011
3739