4
Tetrahedron
9. Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Green Chem.
Since this method was as simple as by adding -oxo-alkynes
terminally,[16] we may expect that it will have widespread
applications in organic synthesis.
2009, 11, 156.
10. Mortén, M.; Hennum, M.; Bonge-Hansen, T. Beilstein J. Org. Chem.
2016, 12, 1590.
11. (a) Zhu, R.; Xing, L.; Wang, X.; Cheng, C.; Su, D.; Hu, Y. Adv. Synth.
Catal. 2008, 350, 1253. (b) Healy, P. C.; Kildea, J. D.; Skelton, B. W.;
White, A. H. Aust. J. Chem. 1989, 42, 79. (c) Healy, P. C.; Kildea, J. D.;
White, A. H. J. Chem. Soc., Dalton Trans. 1988, 1637.
Acknowledgments
12. In literature, Cu(I)-acetylides are commonly represented by a simple
formula RC≡CCu, but in which each alkyne and Cu(I) are coordinated
each other by one (mononuclear), two (dinuclear), or three C–Cu bonds
(trinuclear). The order of stability for these complexes commonly is:
mononuclear < dinuclear < trinuclear. For selected reviews: (a) Wang,
X.; Wang, X.; Wang, X.; Zhang, J.; Liu, C.; Hu, Y. Chem. Rec. 2017, 17,
1231 (for the structures of Cu(I)-acetylides, see: pp 1232–1233). (b)
Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952 (for the
structures of Cu(I)-acetylides, see: pp 2953–2956). (c) Lang, H.; Köhler,
K.; Blau, S. Coord. Chem. Rev. 1995, 143, 113. (d) Nast, R. Coord.
Chem. Rev. 1982, 47, 89.
We gratefully acknowledge financial support from NNSFC
(Nos. 2147210721372142 and 21372142).
References and notes
1. For selected reviews: (a) “Progress in Allene Chemistry,” Guest editors:
Alcaide, B. and Almendros, P., a themed issue of Chem. Soc. Rev. 2014,
43, 2879. (b) Lechel, T.; Pfrengle, F.; Reissig, H.-U.; Zimmer, R.
ChemCatChem 2013, 5, 2100. (c) “Modern Allene Chemistry”, ed.
Krause, N. and Hashmi, A. S. K., Wiley-VCH, Weinheim, 2004, vol. 1
and 2. (d) Hoffmann-Röder, A.; Krause, N. Angew. Chem., Int. Ed. 2004,
43, 1196. (e) Taylor, D. R. Chem. Rev. 1967, 317.
13. Trinuclear Cu(I)-acetylide is excluded from this pathway because the
premade trinuclear Cu(I)-acetylide 9a was inert to couple with 7a. A
reference for similar results, see: Hassink, M.; Liu, X.; Fox, J. M. Org.
Lett. 2011, 13, 2388.
2. For selected recent references: (a) An, C.; Jurica, J. A.; Walsh, S. P.;
Hoye, A. T.; Smith III, A. B. J. Org. Chem. 2013, 78, 4278. (b) Calter,
M. A.; Li, N. Org. Lett. 2011, 13, 3686. (c) Wang, S.; Wu, F.; Rech, J.
C.; Green, M. E.; Balachandran, R.; Horne, W. S.; Day, B. W.;
Floreancig, P. E. J. Am. Chem. Soc. 2011, 133, 16668. (d) Crimmins, M.
T.; Stevens, M. J.; Schaaf, G. M. Org. Lett. 2009, 11, 3990. (e) Smith III,
A. B.; Jurica, J. A.; Walsh, S. P. Org. Lett. 2008, 10, 5625. (f) Yoshino,
T.; Ng, F.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 14185. (g)
Floreancig, P. E.; Rech, J. C. Org. Lett. 2005, 7, 5175. (h) Cox, C. D.;
Siu, T.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 5625.
14. Trinuclear Cu(I)-acetylide 9a is an insoluble red solid and was
synthesized by our early procedure: Chen, W.; Wang, B.; Liu, N.; Huang,
D.; Wang, X.; Hu, Y. Org. Lett. 2014, 16, 6140.
15. (a) Wang, T.; Wang, M.; Fang, S.; Liu, J.-Y. Organometallics 2014, 33,
3941. (b) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Angew. Chem.
Int. Ed. 2011, 50, 1114.
16. A typical procedure for synthesis of ethyl 5-oxohexa-2,3-dienoate
(1a). To a stirred solution of CuI (19 mg, 0.1 mmol) and ethyl -
diazoacetate (7a, 114 mg, 1 mmol) in MeCN (3 mL) was added a
solution of but-3-yn-2-one (6a, 68 mg, 1 mmol) in MeCN (1 mL). After
the resultant mixture was stirred at room temperature for 3 h (monitored
by TLC), the solvent was removed by vacuum and the residue was
purified by flash chromatography (silica gel, 20% EtOAc in PE) to give
3. For selected recent references: (a) Han, T.; Wang, Y.; Li, H.-L.; Luo, X.;
Deng, W.-P. J. Org. Chem. 2018, 83, 1538. (b) Miura, H.; Sasaki, S.;
Ogawa, R.; Shishido, T. Eur. J. Org. Chem. 2018, 1858. (c) Bakshi, D.;
Singh, A. Org. Biomol. Chem. 2017, 15, 3175. (d) Liu, F.; Wang, J.-Y.;
Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Angew. Chem., Int. Ed.
2017, 56, 15570. (e) Wang, Y.; Jiang, C.-M.; Li, H.-L.; He, F.-S.; Luo,
X.; Deng, W.-P. J. Org. Chem. 2016, 81, 8653. (f) Li, H.-L.; Wang, Y.;
Sun, P.-P.; Luo, X.; Shen, Z.; Deng, W.-P. Chem. Eur. J. 2016, 22, 9438.
1
110 mg (71%) of the desired product 1a as a yellow oil. H NMR (400
MHz, CDCl3) 6.15 (d, J = 6.0 Hz, 1H), 6.08 (d, J = 6.0 Hz, 1H), 4.26 (q,
J = 7.3 Hz, 2H), 2.30 (s, 3H), 1.50 (t, J = 7.3 Hz, 3H); 13C NMR (100
MHz, CDCl3) 221.3, 195.3, 163.0, 100.4, 92.2, 61.6, 27.4, 14.0.
4. For selected reviews: (a) Torres, Ò.; Pla-Quintana, A. Tetrahedron Lett.
2016, 57 3881. (b) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519. (c)
Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384.
The products 1b-1k, 2a-2h and 9a-9b were prepared by the similar
procedure.
5. (a) Yoshida, M.; Hidaka, Y.; Nawata, Y.; Rudziński, J. M.; Ōsawa, E.;
Kanematsu, K. J. Am. Chem. Soc. 1988, 110, 1232. (b) Bryson, T. A.;
Dolak, T. M. Org. Synth. 1977, 57, 62. (c) Buchi, G.; Carlson, J. A. J.
Am. Chem. Soc. 1969, 91, 6470.
Supplementary Material
Supplementary data associated with this article can be found,
in the online version, at
6. (a) Katoh, T.; Noguchi, C.; Kimura, H.; Fujiwara, T.; Ichihashi, S.;
Nishide, K.; Kajimoto, T.; Node, M. Tetrahedron: Asymmetry 2006, 17,
2943. (b) Node, M.; Fujiwara, T.; Ichihashi, S.; Nishide, K. Tetrahedron
Lett. 1998, 39, 6331.
Click here to remove instruction text...
7. Suárez, A.; Fu, G. C. Angew. Chem., Int. Ed. 2004, 43, 3580.
8. Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat.
Chem. 2013, 5, 240.
4