only be applied to high yielding reactions with high
enantioselectivity. (iii) The chiral tfb ligand is not readily
available in an enantiopure form. To establish a more
efficient and general catalytic system for cycloisomeriza-
tion of 1,6-enynes, we designed new tridentate ligands for
rhodium (Scheme 2).15,16 The designed rhodium catalysts
involve characteristic features as follows: (i) A tridentate
ligand, which has chelating one phosphorus atom and a
chiral diene moiety, strongly coordinates to a rhodium
center, and the in situ generated cationic complex provides
a single vacant site on the square planar geometry of the
rhodium(I) center. (ii) An electron-withdrawing character
of an alkene moiety substituted with an ester group, which
locates trans to the single vacant site of the cationic
complex, is expected to enhance the π-acidity of rhodium
toward electrophilic alkyne activation. (iii) The chiral
diene framework is readily obtained from a natural pro-
duct (R)-R-phellandrene. Here we report the development
of new chiral diene-phosphine tridentate ligands for rho-
dium in asymmetric cycloisomerization of nitrogen-bridged
1,6-enynes giving 3-azabicyclo[4.1.0]heptene derivatives
with high enantioselectivity.
Scheme 1. A Rh/Chiral Diene-Phosphine Catalyst in Asym-
metric Cycloisomerization of 1,6-Enynes
single coordination site13 on the rhodium center for elec-
trophilic activation of the alkyne moiety (Scheme 1).14 The
catalytic system, however, has some drawbacks as follows:
(i) The oligomerization of enynes is sometimes observed,
probably due to the dissociation of nonchelating triphe-
nylphosphine. (ii) The applicable substrates are limited to
enynes substituted with a methyl group at the alkyne
terminus, and limited substituents of alkene moieties can
(3) (a) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60,
€
5567. (b) Furstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000,
ꢀ
~
ꢀ
122, 6785. (c) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.;
€
Scheme 2. Concept of New Rh/Chiral Diene-Phosphine Cata-
lysts
Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (d) Furstner, A.;
Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (e) Nevado,
C.; Ferrer, C.; Echavarren, A. M. Org. Lett. 2004, 6, 3191. (f) Furstner,
€
A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (g) Cho,
ꢀ
E. J.; Kim, M.; Lee, D. Org. Lett. 2006, 8, 5413. (h) Hercouet, A.; Berree,
F.; Lin, C. H.; Toupet, L.; Carboni, B. Org. Lett. 2007, 9, 1717. (i) Ferrer,
C.; Raducan, M.; Nevado, C.; Claverie, C. K.; Echavarren, A. M.
Tetrahedron 2007, 63, 6306. (j) Olagnier, D.; Costes, P.; Berry, A.; Linas,
M.-D.; Urrutigoity, M.; Dechy-Cabaret, O.; Benoit-Vical, F. Bioorg.
Med. Chem. Lett. 2007, 17, 6075. (k) Xia, J.-B.; Liu, W.-B.; Wang, T.-M.
You, S.-L. Chem.;Eur. J. 2010, 16, 6442.
~
~
(4) (a) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.;
ꢀ
Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43,
2402. (b) Lee, S. I.; Kim, S. M.; Kim, S. Y.; Chung, Y. K. Synlett 2006,
2256. (c) Lee, S. I.; Kim, S. M.; Choi, M. R.; Kim, S. Y.; Chung, Y. K. J.
Org. Chem. 2006, 71, 9366. (d) Kim, S. M.; Park, J. H.; Choi, S. Y.;
Chung, Y. K. Angew. Chem., Int. Ed. 2007, 46, 6172. (e) Chen, Z.; Zhang,
Y.-X.; Wang, Y.-H.; Zhu, L.-L.; Liu, H.; Li, X.-X.; Guo, L. Org. Lett.
2010, 12, 3468.
(5) Costes, P.; Weckesser, J.; Dechy-Cabaret, O.; Urrutigoıty, M.;
Kalck, P. Appl. Organomet. Chem. 2008, 22, 211.
(6) Shibata, T.; Kobayashi, Y.; Maekawa, S.; Toshida, N.; Takagi,
K. Tetrahedron 2005, 61, 9018.
(7) Sim, S. H.; Lee, S. I.; Park, J. H.; Chung, Y. K. Adv. Synth. Catal.
We focused on carboxylic acid (1R,4R,7R)-2,17 which is
readily preparedfrom(R)-R-phellandrene, asa chiraldiene
framework for the synthesis of new chiral diene-monopho-
sphine tridentate ligands (Scheme 3). The ligands were
simply prepared by esterification of 2 with 2-(diarylpho-
sphino)phenols. Thus, carboxylic acid 2 was treated with
oxalyl chloride, and the resulting acid chloride was reacted
2010, 352, 317.
(8) For a recent example of asymmetric cycloisomerization of enynes
ꢀ
via 5-endo cyclization, see: Martınez, A.; Garcıa-Garcıa, P.; Fernandez-
(15) Nishimura, T.; Maeda, Y.; Hayashi, T. Angew. Chem., Int. Ed.
2010, 49, 7324.
(16) For selected examples of the use of phosphine/alkene hybrid
Rodriıguez, M. A.; Rodrıguez, F.; Sanz, R. Angew. Chem., Int. Ed. 2010,
49, 4633.
(9) (a) Brissy, D.; Skander, M.; Retailleau, P.; Marinetti, A. Orga-
nometallics 2007, 26, 5782. (b) Brissy, D.; Skander, M.; Retailleau, P.;
Frison, G.; Marinetti, A. Organometallics 2009, 28, 140. (c) Brissy, D.;
Skander, M.; Jullien, H.; Retailleau, P.; Marinetti, A. Org. Lett. 2009,
11, 2137.
(10) Chao, C.-M.; Beltrami, D.; Toullec, P. Y.; Michelet, V. Chem.
Commun. 2009, 6988.
(11) For an example of gold-catalyzed asymmetric cycloisomeriza-
tion for the synthesis of the triple reuptake inhibitor, see: Deschamps,
N. M.; Elitzin, V. I.; Liu, B.; Mitchell, M. B.; Sharp, M. J.; Tabet, E. A. J.
Org. Chem. 2011, 76, 712.
ligands in the symmetric reactions, see: (a) Maire, P.; Delbon, S.; Breher,
€
€
€
€
F.; Geier, J.; Bohler, C.; Ruegger, H.; Schonberg, H.; Grutzmacher, H.
Chem.;Eur. J. 2004, 10, 4198. (b) Shintani, R.; Duan, W.-L.; Nagano,
T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611. (c)
ꢀ
Kasak, P.; Arion, V. B.; Widhalm, M. Tetrahedron: Asymmetry 2006, 17,
3084. (d) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew.
~
Chem., Int. Ed. 2007, 46, 3139. (e) Mariz, R.; Briceno, A.; Dorta, R.
ꢁ
ꢁ
ꢁ
ꢁ ꢀ
Organometallics 2008, 27, 6605. (f) Stepnicka, P.; Cısarova, I. Inorg.
Chem. 2006, 45, 8785. (g) Stemmler, R. T.; Bolm, C. Synlett 2007, 1365.
(h) Minuth, T.; Boysen, M. M. K. Org. Lett. 2009, 11, 4212. (i) Liu, Z.;
Du, H. Org. Lett. 2010, 12, 3054.
(12) Forreviewsofchiraldieneligands, see:(a)Shintani, R.;Hayashi, T.
€
(17) (a) Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10,
4387. (b) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009,
4815. (c) Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.;
Hayashi, T. J. Am. Chem. Soc. 2009, 131, 13588. (d) Shintani, R.; Soh,
Y.-T.; Hayashi, T. Org. Lett. 2010, 12, 4106. (e) Shintani, R.; Hayashi, T.
Org. Lett. 2011, 13, 350. (f) Pattison, G.; Piraux, G.; Lam, H. W. J. Am.
Chem. Soc. 2010, 132, 14373.
Aldrichimica Acta 2009, 42, 31. (b) Defieber, C.; Grutzmacher, H.;
Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4482.
(13) Feducia, J. A.; Campbell, A. N.; Doherty, M. Q.; Gagne, M. R.
ꢀ
J. Am. Chem. Soc. 2006, 128, 13290.
(14) Nishimura, T.; Kawamoto, T.; Nagaosa, M.; Kumamoto, H.;
Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 1638.
Org. Lett., Vol. 13, No. 14, 2011
3675