ARTICLES
16. Wang, X. J., Hart, S. A., Xu, B., Mason, M. D., Goodell, F. R. & Etzkorn, F. A.
Serine-cis-proline and serine-trans-proline isosteres: stereoselective synthesis of
(Z)- and (E)-alkene mimics by Still–Wittig and Ireland–Claisen rearrangements.
J. Org. Chem. 68, 2343–2349 (2003).
Table 1 | Relative drug potencies in both phases of the
formalin test (i.p.; 95% confidence interval) from data
presented in Fig. 5c,d.
17. Fristad, W. E. & Paquette, L. A. Oxidation chemistry of a cis-2-(3-
flurylidene)ethanol. Heterocycles 31, 2219–2224 (1990).
Relative potencies (ED50, mg kg21
)
18. Le Bars, D., Gozariu, M. & Cadden, S. W. Animal models of nociception.
Pharmacol. Rev. 53, 597–652 (2001).
19. Collier, H. O. J., Dinneedn L. C., Johnson, C. A. & Schneider, C. The abdominal
constriction response and its suppression by analgesics in the mouse. Br. J.
Pharmac. Chemother. 32, 295–310 (1968).
Drug
Phase 1
Phase 2
(2)-Conolidine sulfate
Morphine sulfate
5.6 (4.0–7.8)
4.6 (3.3–6.4)
6.0 (3.7–9.7)
2.4 (1.7–3.2)
20. Mogil, J. S., Kest, B., Sadowski, B. & Belknap, J. K. Differential genetic mediation
of sensitivity to morphine in genetic models of opiate antinociception: influence
of nociceptive assay. J. Pharmacol. Exp. Ther. 276, 532–544 (1996).
21. Dubuisson, D. & Dennis, S. G. The formalin test: a quantitative study of the
analgesic effects of morphine, meperidine, and brain stem stimulation in rats
and cats. Pain 4, 161–174 (1977).
22. McNamara, C. R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl Acad.
Sci. USA 104, 13525–13530 (2007).
23. Woolf, C. J. Evidence for a central component of post-injury pain
hypersensitivity. Nature 306, 686–688 (1983).
synthetic pathway to any C5-nor stemmadenine. With an efficient
source of this alkaloid secured by synthetic means (nine steps,
18% overall yield), the production of sufficient quantities of the
natural product (and related antipode) was followed by the first
evaluation of this alkaloid in vivo. These combined studies have
resulted in the discovery that conolidine (1) is a potent non-
opioid analgesic that is effective at alleviating chemically induced,
acute and persistent tonic pain. Further studies in neuropathic
pain models will be undertaken to determine more widespread
therapeutic promise for the treatment of chronic pain. Finally,
although determination of the pharmacological mechanism of
action associated with the potent analgesic properties of this
alkaloid remains an area of intense current investigation, the
results of these studies mark the establishment of a chemical
foundation suitable for investigating the therapeutic potential of
this unique alkaloid as a potent non-opioid analgesic.
24. Tjølsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H. & Hole, K. The formalin
test: an evaluation of the method. Pain 51, 5–17 (1992).
25. Li, X., Kamenecka, T. M. & Cameron, M. D. Bioactivation of the epidermal
growth factor receptor inhibitor gefitinib: implications for pulmonary and
hepatic toxicities. Chem. Res. Toxicol. 22, 1736–1742 (2009).
26. Wess, J. et al. Muscarinic receptor subtypes mediating central and peripheral
antinociception studied with muscarinic receptor knockout mice: a review. Life
Sci. 72, 2047–2054 (2003).
27. Stone, L. S., Fairbanks, C. A. & Wilcox, G. L. Moxonidine, a mixed alpha(2)-
adrenergic and imidazoline receptor agonist, identifies a novel adrenergic target
for spinal analgesia. Ann. NY Acad. Sci. 1009, 378–385 (2003).
28. Jann, M. W. & Slade, J. H. Antidepressant agents for the treatment of chronic
pain and depression. Pharmacotherapy 27, 1571–1587 (2007).
29. Shimoyama, N., Shimoyama, M., Davis, A. M., Inturrisi, C. E. & Elliot, K. J.
Spinal gabapentin is antinociceptive in the rat formalin test. Neurosci. Lett. 222,
65–67 (1997).
30. Hunter, J. C. et al. The effect of novel anti-epileptic drugs in rat
experimental models of acute and chronic pain. Eur. J. Pharmacol. 324,
153–160 (1997).
31. Munro, G. Pharmacological assessment of the rat formalin test utilizing the
clinically used analgesic drugs gabapentin, lamotrigine, morphine, duloxetine,
tramadol and ibuprofen: influence of low and high formalin concentrations.
Eur. J. Pharmacol. 605, 95–102 (2009).
Received 16 December 2010; accepted 4 April 2011;
published online 23 May 2011
References
1. Melnikova, I. The pain market. Nat. Rev. Drug Discov. 9, 589–590 (2010).
2. Crofford, L. J. Adverse effects of chronic opioid therapy for chronic
musculoskeletal pain. Nat. Rev. Rheum. 6, 191–197 (2010).
3. Kam, T.-S., Pand, H.-S., Choo, Y.-M. & Komiyama, K. Biologically active ibogan
and vallesamine derivatives from Tabernaemontana divaricata. Chem. Biodivers.
1, 646–656 (2004).
4. Pratchayasakul, W., Pongchaidecha, A., Chattipakorn, N. & Chattipakorn, S.
Ethnobotany & ethnopharmacology of Tabernaemontana divaricata. Indian J.
Med. Res. 127, 317–335 (2008).
5. Ingkaninan, K., Ijzerman, A. P., Taesotikul, T. & Verpoorte, R. Isolation of
opioid-active compounds from Tabernaemopntana pachysiphon leaves.
J. Pharm. Pharmacol. 51, 1441 (1999).
6. Scott, A. I., Yeh, C.-L. & Greenslade, D. Laboratory model for the biosynthesis of
vallesamine, apparicine, and related alkaloids. J. Chem. Soc. Chem. Commun.
947–948 (1978).
7. Lim, D-H., Low, T-Y. & Kam, T-S. Biomimetic oxidative transformations of
pericine: partial synthesis of apparicine and valparicine, a new pentacyclic indole
alkaloid from Kopsia. Tetrahedron Lett. 47, 5037–5039 (2006).
32. Baillie, J. K. & Power, I. The mechanism of action of gabapentin in neuropathic
pain. Curr. Opin. Investig. Drugs 7, 33–39 (2006).
33. Goldstein, A. & Sheehan, P. Tolerance to opioid narcotics. I. Tolerance to the
“running fit” caused by levorphanol in the mouse. J. Pharmacol. Exp. Ther. 169,
175–184 (1969).
34. Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction.
Psychol. Rev. 94, 469–492 (1987).
Acknowledgements
We gratefully acknowledge T.-S. Kam (University of Malaya, Kuala Lumpur, Malaysia) for
providing authentic spectra of natural (þ)-conolidine for comparison with our synthetic
samples (see Supplementary Information).
´
8. Ahond, A., Cave, A., Kan-Fan, C., Langlois, Y. & Potier, P. The fragmentation of
N,N-dimethyltryptamine oxide and related compounds: a possible implication
in indole alkaloid biosynthesis. J. Chem. Soc. Chem. Commun. 517 (1970).
9. Hoffmann, R. W. Allylic 1,3-strain as a controlling factor in stereoselective
transformations. Chem. Rev. 89, 1841–1860 (1989).
Author contributions
´
´
´
10. Bennasar, M.-L., Zulaica, E., Sole, D., Roca, T., Garcıa-Dıaz, D. & Alonso, S.
Total synthesis of the bridged indole alkaloid apparicine. J. Org. Chem. 74,
8359–8368 (2009).
G.C.M. conceived, initiated and directed the project. M.A.T. and A.K.B. conducted all
chemical experiments. L.M.B. initiated and directed the in vivo and in vitro
pharmacological evaluation. L.M.B. and M.D.C. directed the pharmacokinetic
experiments, and K.M.R. and C.G. conducted all biochemical and in vivo experiments.
Receptor binding profiles were generously provided by the National Institute of Mental
Health’s Psychoactive Drug Screening Program, Contract no. HHSN-271-2008-00025-C
(NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth (MD, PhD) at the University
of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda,
Maryland, USA. G.C.M. and L.M.B. wrote the manuscript.
11. Amat, M., Dolors Coll, M., Passarella, D. & Bosch, J. An enantioselective
synthesis of the Strychnos alkaloid (2)-tubifoline. Tetrahedron: Asymmetry 7,
2775–2778 (1996).
12. Amat, M., Dolors Coll, M., Bosch, J., Espinosa, E. & Molins, E., Total syntheses
of the Strychnos indole alkaloids (2)-tubifoline, (2)-tubifolidine, and (2)-
19,20-dihydroakuammicine. Tetrahedron: Asymmetry 8, 935–948 (1997).
13. Kolundzic, F. & Micalizio, G. C. Synthesis of substituted 1,4-dienes by direct
alkylation of allylic alcohols. J. Am. Chem. Soc. 129, 15112–15113 (2007).
14. Still, W. C. & Mitra, A. A highly stereoselective synthesis of Z-trisubstituted
olefins via [2,3]-sigmatropic rearrangement. Preference for a pseudoaxially
substituted transition state. J. Am. Chem. Soc. 100, 1927–1928 (1978).
15. Hart, S. A., Trindle, C. O. & Etzkorn, F. A. Solvent-dependent stereoselectivity in
a Still–Wittig rearrangement: an experimental and ab initio study. Org. Lett. 3,
1789–1791 (2001).
Additional information
453
© 2011 Macmillan Publishers Limited. All rights reserved.