Page 5 of 7
Journal of the American Chemical Society
Hashimoto, T.; Gálvez, A. O.; Maruoka, K. J. Am. Chem. Soc. 2013, 135,
17667-17670.
al-Free Catalysis. Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81,
10145-10153; g) ortho-Quinone methides as key intermediates in cascade
heterocyclizations. Osipov, D. V.; Osyanin, V. A.; Klimochkin, Y. N.
Russ. Chem. Rev. 2017, 86, 625-687; h) Recent advances in the applica-
tion of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone
methides and o-quinone methides in natural product total synthesis. Yang,
B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926-7953; i) Stereoselective Reac-
tions of ortho-Quinone Methide and ortho-Quinone Methide Imines and
Their Utility in Natural Product Synthesis. Nielsen, C. D. T.; Abas, H.;
Spivey, A. C. Synthesis 2018, 50, 4008-4018; j) Applications of Bifunc-
tional Organocatalysts on ortho-Quinone Methides. Mukhopadhyay, S.;
Gharui, C.; Pan, S. C. Asian J. Org. Chem. 2019, 8, 1970-1984.
1
2
3
4
5
6
7
8
(5)
a) Conjugate-Base-Stabilized Brønsted Acids as Asymmetric
Catalysts: Enantioselective Povarov Reactions with Secondary Aromatic
Amines. Min, C.; Mittal, N.; Sun, D. X.; Seidel, D. Angew. Chem. Int. Ed.
2013, 52, 14084-14088; b) Conjugate-Base-Stabilized Brønsted Acids:
Catalytic Enantioselective Pictet-Spengler Reactions with Unmodified
Tryptamine. Mittal, N.; Sun, D. X.; Seidel, D. Org. Lett. 2014, 16, 1012-
1015; c) Enantioselective A3 Reactions of Secondary Amines with a
Cu(I)/Acid–Thiourea Catalyst Combination. Zhao, C.; Seidel, D. J. Am.
Chem. Soc. 2015, 137, 4650-4653; d) Catalytic Enantioselective Intramo-
lecular Aza-Diels–Alder Reactions. Min, C.; Lin, C.-T.; Seidel, D. Angew.
Chem. Int. Ed. 2015, 54, 6608-6612; e) Insights into the Structure and
Function of a Chiral Conjugate-Base-Stabilized Brønsted Acid Catalyst.
Odagi, M.; Araki, H.; Min, C.; Yamamoto, E.; Emge, T. J.; Yamanaka,
M.; Seidel, D. Eur. J. Org. Chem. 2019, 2019, 486-492; f) Highly Acidic
Conjugate-Base-Stabilized Carboxylic Acids Catalyze Enantioselective
oxa-Pictet–Spengler Reactions with Ketals. Zhu, Z.; Odagi, M.; Zhao, C.;
Abboud, K. A.; Kirm, H. U.; Saame, J.; Lõkov, M.; Leito, I.; Seidel, D.
Angew. Chem. Int. Ed. 2020, 59, 2028-2032.
9
(10)
Examples of catalytic enantioselective [4+2] cycloadditions of
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
o-quinone methides: a) Asymmetric Cycloadditions of o-Quinone Methi-
des Employing Chiral Ammonium Fluoride Precatalysts. Alden-Danforth,
E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951-4953; b) Catalytic
Asymmetric Inverse-Electron-Demand Oxa-Diels–Alder Reaction of In
Situ Generated ortho-Quinone Methides with 3-Methyl-2-Vinylindoles.
Zhao, J.-J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Angew. Chem. Int. Ed.
2015, 54, 5460-5464; c) Ortho-Quinone Methides as Reactive Intermedi-
ates in Asymmetric Brønsted Acid Catalyzed Cycloadditions with Unacti-
vated Alkenes by Exclusive Activation of the Electrophile. Hsiao, C.-C.;
Raja, S.; Liao, H.-H.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed.
2015, 54, 5762-5765; d) Merging Chiral Brønsted Acid/Base Catalysis:
An Enantioselective [4 + 2] Cycloaddition of o-Hydroxystyrenes with
Azlactones. Zhang, Y.-C.; Zhu, Q.-N.; Yang, X.; Zhou, L.-J.; Shi, F. J.
Org. Chem. 2016, 81, 1681-1688; e) Brønsted Acid-Catalyzed, Diastereo-
and Enantioselective, Intramolecular Oxa-Diels–Alder Reaction of ortho-
Quinone Methides and Unactivated Dienophiles. Ukis, R.; Schneider, C. J.
Org. Chem. 2019, 84, 7175-7188.
(6)
Selected reviews on asymmetric anion-binding catalysis: a)
(Thio)urea organocatalysis - What can be learnt from anion recognition?
Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187-1198; b) The
progression of chiral anions from concepts to applications in asymmetric
catalysis. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4,
603-614; c) Asymmetric Counteranion-Directed Catalysis: Concept, Defi-
nition, and Applications. Mahlau, M.; List, B. Angew. Chem. Int. Ed.
2013, 52, 518-533; d) Asymmetric Ion-Pairing Catalysis. Brak, K.; Jacob-
sen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534-561; e) The Anion-
Binding Approach to Catalytic Enantioselective Acyl Transfer. Seidel, D.
Synlett 2014, 25, 783-794; f) Applications of Supramolecular Anion
Recognition. Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.
A. Chem. Rev. 2015, 115, 8038-8155; g) Anion-binding catalyst designs
for enantioselective synthesis. Visco, M. D.; Attard, J.; Guan, Y.; Mattson,
A. E. Tetrahedron Lett. 2017, 58, 2623-2628; h) Silanediol Anion Binding
and Enantioselective Catalysis. Attard, J. W.; Osawa, K.; Guan, Y.; Hatt,
J.; Kondo, S.-i.; Mattson, A. Synthesis 2019, 51, 2107-2115.
(11)
a) Catalytic Asymmetric Intramolecular [4+2] Cycloaddition of
In Situ Generated ortho-Quinone Methides. Xie, Y.; List, B. Angew.
Chem. Int. Ed. 2017, 56, 4936-4940; b) Asymmetric Induction via a Heli-
cally Chiral Anion: Enantioselective Pentacarboxycyclopentadiene
Brønsted Acid-Catalyzed Inverse-Electron-Demand Diels–Alder Cy-
cloaddition of Oxocarbenium Ions. Gheewala, C. D.; Hirschi, J. S.; Lee,
W.-H.; Paley, D. W.; Vetticatt, M. J.; Lambert, T. H. J. Am. Chem. Soc.
2018, 140, 3523-3527.
(7)
Selected reviews on asymmetric ion pairing and cooperative
catalysis: a) Multiple Catalysis with Two Chiral Units: An Additional
Dimension for Asymmetric Synthesis. Piovesana, S.; Scarpino Schietro-
ma, D. M.; Bella, M. Angew. Chem., Int. Ed. 2011, 50, 6216-6232; b)
Synergistic catalysis: A powerful synthetic strategy for new reaction de-
velopment. Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633-
658; c) Recent advances in cooperative ion pairing in asymmetric organo-
catalysis. Brière, J.-F.; Oudeyer, S.; Dalla, V.; Levacher, V. Chem. Soc.
Rev. 2012, 41, 1696-1707; d) Cooperative Catalysis; Peters, R., Ed.;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; e)
Hydrogen Bonding and Internal or External Lewis or Brønsted Acid As-
sisted (Thio)urea Catalysts. Gimeno, M. C.; Herrera, R. P. Eur. J. Org.
Chem. 2020, 2020, 1057-1068.
(12)
Selected reviews covering aspects of catalytic enantioselective
reactions involving oxocarbenium ions: a) Asymmetric Organocatalytic
Cyclization and Cycloaddition Reactions. Moyano, A.; Rios, R. Chem.
Rev. 2011, 111, 4703-4832; b) Catalytic Stereoselective SN1-Type Reac-
tions Promoted by Chiral Phosphoric Acids as Brønsted Acid Catalysts.
Gualandi, A.; Rodeghiero, G.; Cozzi, P. G. Asian J. Org. Chem. 2018, 7,
1957-1981; c) Catalytic Enantioselective Approaches to the oxa-Pictet–
Spengler Cyclization and Other 3,6-Dihydropyran-Forming Reactions.
Zhu, Z.; Adili, A.; Zhao, C.; Seidel, D. SynOpen 2019, 03, 77-90.
(13)
Examples of catalytic enantioselective reactions involving the
intermediacy of oxocarbenium ions: a) Titanium(IV)-Catalyzed Dynamic
Kinetic Asymmetric Transformation of Alcohols, Silyl Ethers, and Acetals
under Carbon Allylation. Braun, M.; Kotter, W. Angew. Chem. Int. Ed.
2004, 43, 514-517; b) Catalytic Enantioselective Aldol-type Reaction of
β-Ketosters with Acetals. Umebayashi, N.; Hamashima, Y.; Hashizume,
D.; Sodeoka, M. Angew. Chem. Int. Ed. 2008, 47, 4196-4199; c) Enanti-
oselective Thiourea-Catalyzed Additions to Oxocarbenium Ions. Reisman,
S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198–
7199; d) Enantioselective Direct Aldol-Type Reaction of Azlactone via
Protonation of Vinyl Ethers by a Chiral Brønsted Acid Catalyst. Terada,
M.; Tanaka, H.; Sorimachi, K. J. Am. Chem. Soc. 2009, 131, 3430-3431;
e) Enantioselective Addition of Boronates to Chromene Acetals Catalyzed
by a Chiral Brønsted Acid/Lewis Acid System. Moquist, P. N.; Kodama,
T.; Schaus, S. E. Angew. Chem. Int. Ed. 2010, 49, 7096-7100; f) Catalytic
Asymmetric Transacetalization. Čorić, I.; Vellalath, S.; List, B. J. Am.
Chem. Soc. 2010, 132, 8536-8537; g) Dual Catalysis in Enantioselective
Oxidopyrylium-Based 5+2 Cycloadditions. Burns, N. Z.; Witten, M. R.;
Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 14578-14581; h) Copper-
Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynyla-
tion of Isochroman Acetals. Maity, P.; Srinivas, H. D.; Watson, M. P. J.
Am. Chem. Soc. 2011, 133, 17142-17145; i) Asymmetric spiroacetaliza-
tion catalysed by confined Brønsted acids. Coric, I.; List, B. Nature 2012,
483, 315-319; j) Catalytic Asymmetric Addition of Aldehydes to Oxo-
carbenium Ions: A Dual Catalytic System for the Synthesis of Chromenes.
Rueping, M.; Volla, C. M. R.; Atodiresei, I. Org. Lett. 2012, 14, 4642-
4645; k) Chiral Phosphoric Acid-Catalyzed Enantioselective and Dia-
stereoselective Spiroketalizations. Sun, Z.; Winschel, G. A.; Borovika, A.;
(8)
a) Studies on antibiotics from Helminthosposium sp. fungi.
VII. Siccanin, a new antifungal antibiotic produced by Helminthosposium
siccans. Ishibashi, K. J. Antibiot., A 1962, 15, 161-167; b) Biomimetic
Enantioselective Total Synthesis of (−)-Siccanin via the Pd-Catalyzed
Asymmetric Allylic Alkylation (AAA) and Sequential Radical Cycliza-
tions. Trost, B. M.; Shen, H. C.; Surivet, J.-P. J. Am. Chem. Soc. 2004,
126, 12565-12579; c) Naphthalene Derivatives from the Roots of Pentas
parvifolia and Pentas bussei. Abdissa, N.; Pan, F.; Gruhonjic, A.; Gräfen-
stein, J.; Fitzpatrick, P. A.; Landberg, G.; Rissanen, K.; Yenesew, A.;
Erdélyi, M. J. Nat. Prod. 2016, 79, 2181-2187; d) Total Synthesis of (+)-
Medicarpin. Yang, X.; Zhao, Y.; Hsieh, M.-T.; Xin, G.; Wu, R.-T.; Hsu,
P.-L.; Horng, L.-Y.; Sung, H.-C.; Cheng, C.-H.; Lee, K.-H. J. Nat. Prod.
2017, 80, 3284-3288.
(9)
Selected reviews on the chemistry of o-quinone methides: a) o-
Quinone methides: intermediates underdeveloped and underutilized in
organic synthesis. Van De Water, R. W.; Pettus, T. R. R. Tetrahedron
2002, 58, 5367-5405; b) ortho-Quinone Methides in Natural Product Syn-
thesis. Willis, N. J.; Bray, C. D. Chem. Eur. J. 2012, 18, 9160-9173; c)
The Domestication of ortho-Quinone Methides. Bai, W.-J.; David, J. G.;
Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R. Acc. Chem. Res.
2014, 47, 3655-3664; d) Recent Advances in Catalytic Asymmetric Reac-
tions of o-Quinone Methides. Wang, Z.; Sun, J. Synthesis 2015, 47, 3629-
3644; e) The Emergence of Quinone Methides in Asymmetric Organoca-
talysis. Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733-
11764; f) Emerging Roles of in Situ Generated Quinone Methides in Met-
ACS Paragon Plus Environment