generate a more active organometallic agent from tetra-
allyltin through transmetalation.7
two-carbonic linkage, 4-allyl chroman-2-one derivative 3a
was obtained with 67% yield, 76% ee, and an up to 95:5
anti/syn ratio in ClCH2CH2Cl (Table 1, entry 1). With
ligand L2 derived from 2-adamantyl amine, both the yield
and the enantioselectivity of the reaction dropped (Table 1,
entry 2). When ligand L3 with a three-carbonic linkage was
used, the enantioselectivity of the reaction deteriorated
sharply (26% ee, Table 1, entry 3). It indicated that the
compact structure of the catalyst benefited the enantioselec-
tivity in the asymmetric transformation which was also in
accord with the sterical influence of the ester group of
coumarins. The substrate with a bulky ester group could
afford higher stereoselectivity, and substrate 1a was the
best candidate.13 Further optimization of the reaction con-
ditions showed that THF benefited the reaction with a
higher ee value and increasing the reaction temperature to
40 °C could lead to a moderate improvement of the yield
We chose 3-carboxylate-coumarin as the model substrate
which presents a kind of privileged scaffold of biological and
pharmaceutical interest.8 The introduction of a 3-carbox-
ylate group would enhance the activity and chelating cap-
ability. Initially, allyl reagents such as allylbromide/zinc,9
allyltrichlorosilane, and allyltrimethylsilane10 with various
Lewis acids were examined. Unfortunately, no desired
conjugate addition product was obtained. Only when tetra-
allyltin was used could the product 3a be detected. Then we
extended the scope to chiral Lewis acid catalysts of N,N0-
dioxide to promote the asymmetric conjugate allylation
reaction, which have been used in the allylation of carbonyl
compounds11 and other nucleophilic additions12 in our
group. A variety of metalꢀligand combinations showed
that chiral rare earth metal complexes of N,N0-dioxide with
sterically hindered aliphatic amide moieties could give
moderate results.13 In the presence of 10 mol % of Yb(OTf)3
and ligand L1 which contains a 1-adamantyl group and a
Table 1. Optimization of the Reaction Conditionsa
(7) For the precedent example of generating active organometallic
agents from organotin through transmetalation in a conjugate allylation
reaction, see: Shibata, I.; Kano, T.; Kanazawa, N.; Fukuoka, S.; Baba,
A. Angew. Chem., Int. Ed. 2002, 41, 1389.
(8) For the biological and pharmaceutical activity of coumarins, see:
(a) Takechi, M.; Tanaka, Y.; Takehara, M.; Nonaka, G. I.; Nishioka, I.
Phytochemistry 1985, 24, 2245. (b) Iinuma, M.; Tanaka, T.; Mizuno, M.;
Katsuzaki, T.; Ogawa, H. Chem. Pharm. Bull. 1989, 37, 1813. (c) Iinuma,
M.; Ohyama, M.; Tanaka, T.; Mizuno, M.; Hong, S. K. Phytochemistry
1991, 30, 3153. (d) Vilain, A. C.; Okochi, V.; Vergely, I.; Reboud-
Ravaux, M.; Mazaleyrat, J. P.; Wakselman, M. Biochim. Biophys. Acta
1991, 1076, 401. (e) Chang, Y. C.; Nair, M. G. J. Nat. Prod. 1995, 58,
ꢀ
1901. (f) Hoult, J. R. S.; Paya, M. Gen. Pharmacol. 1996, 27, 713. (g)
Boyle, F. T.; Costello, G. F. Chem. Soc. Rev. 1998, 27, 251. (h)
Tillekeratne, L. M. V.; Sherette, A.; Grossman, P.; Hupe, L.; Hupe,
D.; Hudson, R. A. Bioorg. Med. Chem. Lett. 2001, 11, 2763. (i) Bailly, C.;
Bal, C.; Barbier, P.; Combes, S.; Finet, J. P.; Hildebrand, M. P.; Peyrot,
V.; Wattez, N. J. Med. Chem. 2003, 46, 5437. (j) Roelens, F.; Huvaere,
K.; Dhooge, W.; Van Cleemput, M.; Comhaire, F.; De Keukeleire, D.
Eur. J. Med. Chem. 2005, 40, 1042. (k) Kumar, A.; Singh, B. K.; Tyagi,
R.; Jain, S. K.; Sharma, S. K.; Prasad, A. K.; Raj, H. G.; Rastogi, R. C.;
Watterson, A. C.; Parmar, V. S. Bioorg. Med. Chem. 2005, 13, 4300. (l)
Menasria, F.; Azebaze, A. G. B.; Billard, C.; Faussat, A. M.; Nkengfack,
A. E.; Meyer, M.; Kolb, J. P. Leuk. Res. 2008, 32, 1914.
(9) For examples of allylbromide/zinc in an allylation reaction, see:
(a) Li, H.; Cheng, H. S.; Seow, A. H.; Loh, T. P. Tetrahedron Lett. 2007,
48, 2209. (b) Kong, W.; Fu, C.; Ma, S. Org. Biomol. Chem. 2008, 6, 4587.
(10) For selected examples of allyltrimethylsilane as the nucleophilic
reagent in a conjugate allylation reaction, see: (a) Hosomi, A.; Sakurai,
H. J. Am. Chem. Soc. 1977, 99, 1673. (b) Majetich, G.; Casares, A.;
Chapman, D.; Behnke, M. J. Org. Chem. 1986, 51, 1745. (c) Hayashi,
M.; Mukaiyama, T. Chem. Lett. 1987, 289. (d) Lee, P. H.; Lee, K.; Sung,
S.; Chang, Y.; S. J. Org. Chem. 2001, 66, 8646.
T
yield
[%]b
ee
entry
L
Cocatalyst
none
Solvent
[°C]
[%]c
1
L1
L2
L3
L1
L1
L1
L1
L1
L1
L1
L1
L1
DCE
DCE
DCE
THF
THF
THF
THF
THF
THF
THF
THF
THF
25
25
25
25
40
40
40
40
40
40
40
40
67
58
60
22
77
40
21
15
NRd
50
63
99
76
50
26
86
86
89
90
89
2
none
3
none
4
none
5
none
6e
7e
8e
9e
10e
11e
12f
none
CuCl
CuBr
CuI
CuOAc
(CuOTf)2•C7H8
(CuOTf)2•C7H8
90
90
91
(11) For N,N0-dioxide in an asymmetric allylation reaction of carbo-
nyl, see: (a) Zhang, X.; Chen, D. H.; Liu, X. H.; Feng, X. M. J. Org.
Chem. 2007, 72, 5227. (b) Zheng, K.; Qin, B.; Liu, X. H.; Feng, X. M. J.
Org. Chem. 2007, 72, 8478. (c) Huang, J. L.; Wang, J.; Chen, X. H.; Wen,
Y. H.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2008, 350, 287.
(12) For selected examples of N,N0-dioxide-metal complexes in nu-
cleophilic addition reactions, see: (a) Xie, M. S.; Chen, X. H.; Zhu, Y.;
Gao, B.; Lin, L. L.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2010,
49, 3799. (b) Cai, Y. F.; Liu, X. H.; Hui, Y. H.; Jiang, J.; Wang, W. T.;
Chen, W. L.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2010, 49,
6160. (c) Chang, L.; Kuang, Y. L.; Qin, B.; Zhou, X.; Liu, X. H.; Lin,
L. L.; Feng, X. M. Org. Lett. 2010, 12, 2214. (d) Li, W.; Wang, J.; Hu,
X. L.; Shen, K.; Wang, W. T.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng,
X. M. J. Am. Chem. Soc. 2010, 132, 8532. (e) Wang, W. T.; Liu, X. H.;
Cao, W. D.; Wang, J.; Lin, L. L.; Feng, X. M. Chem.;Eur. J. 2010, 16,
1664. (f) Wang, W. T.; Liu, X. H.; Cao, W. D.; Wang, J.; Lin, L. L.; Feng,
X. M. Chem.;Eur. J. 2010, 16, 1664. (g) Zheng, K.; Yin, C. K.; Liu,
X. H.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2011, 50, 2573.
(13) For details, see the Supporting Information.
a Unless otherwise noted, the reactions were performed with 1a (0.1
mmol), 2a (0.1 mmol), Yb(OTf)3 (10 mol %), L (10 mol %), cocatalyst
(10 mol %) in 0.4 mL of solvent for 24 h under a nitrogen atmosphere.
Up to 95:5 dr values were observed which were determined by 1H NMR
or HPLC on a chiral stationary phase. b Isolated yield. c Determined by
HPLC on a chiral stationary phase (chiralcel OD-H). d NR = No
Reaction. e THF (0.8 mL) was used. f THF (1.2 mL) was used, and the
reaction time was prolonged to 48 h.
(77% yield, 86% ee, Table 1, entries 4 and 5). Lowering the
concentration of the reaction system resulted in the enan-
tioselectivity slightly increasing to 89% ee, whereas a low
yield was obtained even with a prolonged reaction time
(40% yield, Table 1, entry 6).
Org. Lett., Vol. 13, No. 15, 2011
3815