and used catalytically, and palladium-catalyzed “Wacker-
type” heterocylizations represent prominent examples of
this principle and find many uses in the synthesis of oxygen
and nitrogen heterocycles.15 During the past decade, there
have been remarkable advances in copper-catalyzed or-
ganic synthesis, and a wide scope of applications have
been investigated because of the low cost and toxicity of
copper catalysts and good functional tolerance of copper-
catalyzed methods.16 Recently, several examples for effi-
cient copper-catalyzed sp2 CÀH amination have been
reported,17 and the heterocycles have been constructed
via copper-promoted18 or copper/iron-cocatalyzed19 arene
sp2 CÀH activation strategy using ideal dioxygen as the
oxidant.20 Herein, we report a novel copper-catalyzed
aerobic oxidative intramolecular alkene CÀH amination
leading to N-heterocycles under air.
Figure 1. Structure of conjugate containing isoindolinone and
1,4-dihydropyrazine frameworks.
The development of transition-metal-catalyzed reac-
tions for the formation of heterocycles continues to be an
active area of research.8 However, the precursors in the
traditional methods needed possession of the correspond-
ing functional groups or prefunctionalization before the
synthesis of N-heterocycles. Recently, the direct functio-
nalizationof CÀH bonds hasmade progress,9 and someN-
heterocycles, such as carbazoles,10 benzimidazoles,11
indazoles,12 indolines,13 and N-methoxylactams,14 have
been constructed through a CÀH activation/CÀN bond-
forming strategy, and most of the methods used expensive
palladium-, rhodium-, and ruthenium-based catalysts
although they were very efficient. The use of transition-
metal electrophiles in alkene heterocyclization reactions is
attractive because facile cleavage of the metalÀcarbon
bond often enables the metal electrophile to be regenerated
Table 1. Copper-Catalyzed CÀH Amination of 3-Benzylidene-
2-pyridin-2-ylmethyl-2,3-dihydro-isoindol-1-one (1a) Leading
to N-Hetercycle (2a) under Air: Optimization of Conditionsa
temp
yield
(%)b
entry
cat.
acid
solvent
(°C)
(9) For recent reviews, see: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M.
Chem. Rev. 2002, 102, 1731. (b) Hassan, J.; vignon, M. S.; Gozzi, C.;
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (c) M., H.; Davies,
L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (d) Chen, X.; Engle,
K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(e) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(f) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(g) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (h) Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (i) Lewis,
L. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
(j) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074. (k) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792. (l) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949.
(m) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2096.
(n) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212. (o) Jia, C.;
Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (p) Labinger,
J. A.; Bercaw, J. E. Nature 2002, 417, 507. (q) Kakiuchi, F.; Chatani, N.
Adv. Synth. Catal. 2003, 345, 1077. (r) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439. (s) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103, 8928.
1
CuI
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
PivOH
AcOH
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMSO
DMF
DMF
DMF
100
100
100
100
100
100
100
100
100
100
100
100
110
110
110
110
72
54
2
CuBr
CuCl
Cu2O
52
3
48
4
trace
40
5
Cu(OAc)2
6
Cu(O2CCF3)2
68
7
CuSO4 5H2O
63
3
8
CuCl2
trace
trace
trace
33
9
CuBr2
10
11
12
13
14
15
16
17
18
CuO
Cu
À
0
Cu(O2CCF3)2
83
CuSO4 5H2O
69
3
Cu(O2CCF3)2
Cu(O2CCF3)2
Cu(O2CCF3)2
Cu(O2CCF3)2
71
78
(10) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 14560. (b) Tsang, W. C. P.; Munday, R. H.; Brasche, G.;
Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (c) Jordan-
Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J.
J. Am. Chem. Soc. 2008, 130, 16184.
(11) Xiao, Q.; Wang, W.-H.; Liu, G.; Meng, F.-K.; Chen, J.-H.;
Yang, Z.; Shi, Z.-J. Chem.;Eur. J. 2009, 15, 7292.
CF3COOH
À
0
110
0
a Reaction conditions: 3-benzylidene-2-pyridin-2-ylmethyl-2,3-dihy-
droisoindol-1-one (1a) (0.5 mmol), catalyst (0.1 mmol), acid (1.5 mmol),
solvent (2 mL), reaction time (8 h) in a flask under air. b Isolated yield.
(12) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K.
Org. Lett. 2007, 9, 2931.
(13) (a) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
(16) For recent reviews on copper-catalyzed cross couplings, see:
(a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (b) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (d) Evano,
G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (e) Ma, D.;
Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (f) Monnier, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2009, 48, 6954. (g) Rao, H.; Fu, H. Synlett 2011,
745 and references cited therein; for selected papers, see: (h) Klapars, A.;
Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7727. (i) Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5,
4987. (j) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett.
2001, 3, 4315. (k) Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.; You, J. J. Org.
Chem. 2007, 72, 2737.
€
10806. (b) Neumann, J. J.; Rakshit, S.; Droge, T.; Glorius, F. Angew.
Chem., Int. Ed. 2009, 48, 6892.
(14) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
(15) For selected references, see: (a) Hegedus, L. S. J. Mol. Catal.
1983, 19, 201. (b) Wolfe, J. P.; Thomas, J. S. Curr. Org. Chem. 2005, 9,
625. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (d) Tietze,
L. F.; Sommer, K. M.; Zinngrebe, J.; Stecker., F. Angew. Chem., Int. Ed.
2004, 44, 257. (e) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328.
(f) Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J.
Org. Chem. 1996, 61, 3584. (g) Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew.
Chem., Int. Ed. 2002, 41, 164. (h) Trend, R. M.; Ramtohul, Y. K.;
Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.
Org. Lett., Vol. 13, No. 14, 2011
3695