Chemical Research in Toxicology
Article
(12) Vicente, E., Villar, R., Burguete, A., Solano, B., Per
́
ez-Silanes, S.,
oxides to undergo highly cytotoxic deoxygenative metabolism
under aerobic conditions. Thus, cycles of N-oxidation and
bioreductively activated one-electron deoxygenation could lead
to hepatic or systemic toxicity for some nitrogen heterocycles.
Further studies are necessary to elucidate the structural features
that enable both one-electron bioreductive activation of
aromatic N-oxides and their subsequent conversion to cytotoxic
reactive intermediates in normal aerobic tissue.
Aldana, I., Maddry, J. A., Lenaerts, A. J., Franzblau, S. G., Cho, S.-h.,
Monge, A., and Goldman, R. C. (2008) Efficacy of quinoxaline-2-
carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis.
Antimicrob. Agents Chemother. 52, 3321−3326.
(13) Ganley, B., Chowdhury, G., Bhansali, J., Daniels, J. S., and Gates,
K. S. (2001) Redox-activated, hypoxia-selective DNA cleavage by
quinoxaline 1,4-di-N-oxide. Bioorg. Med. Chem. 9, 2395−2401.
(14) McIlwain, H. (1943) Bacterial inhibition by metabolite
analogues. Part V. Reactions and antibacterial properties of p-diazine
di-N-oxides. J. Chem. Soc. No. part I, 322−327.
(15) Hennessey, T. D., and Edwards, J. R. (1972) Antibacterial
properties of quindoxin: a new growth promoting agent. Vet. Rec. 90,
187−190.
(16) Suter, W., Rosselet, A., and Knusel, F. (1978) Mode of action of
quindoxin and substituted quinoxaline-di-N-oxides on E. coli.
Antimicrob. Agents Chemother. 13, 770−783.
(17) Priyadarsini, K. I., Tracy, M., and Wardman, P. (1996) The one-
electron reduction potential of 3-amino-1,2,4-benzotriazine 1,4-dioxide
(tirapazamine): A hypoxia-selective bioreductive drug. Free Radical Res.
25, 393−399.
(18) Lloyd, R. V., Duling, D. R., Rumyantseva, G. V., Mason, R. P.,
and Bridson, P. K. (1991) Microsomal reduction of 3-amino-1,2,4,-
benzotriazine 1,4-dioxide to a free radical. Mol. Pharmacol. 40, 440−
445.
AUTHOR INFORMATION
Corresponding Author
*Phone: (573) 882-6763. Fax: (573) 882-2754. E-mail:
■
ACKNOWLEDGMENTS
We thank Chad Inman and Zachary Parsons for experimental
assistance.
■
REFERENCES
■
(1) Xia, Q., Zhang, L., Zhang, J., Sheng, R., Yang, B., He, Q., and Hu,
Y. (2011) Synthesis, hypoxia-selective cytotoxicity of new 3-amino-
1,2,4-benzotriazine 1,4-dioxide derivatives. Eur. J. Med. Chem. 46, 919−
926.
(19) Wardman, P., Priyadarsini, K. I., Dennis, M. F., Everett, S. A.,
Naylor, M. A., Patel, K. B., Stratford, I. J., Stratford, M. R. L., and
Tracy, M. (1996) Chemical properties which control selectivity and
efficacy of aromatic N-oxide bioreductive drugs. Br. J. Cancer 74, S70−
S74.
(20) Laderoute, K. L., Wardman, P., and Rauth, M. (1988) Molecular
mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-
benzotriazine 1,4-dioxide (SR4233). Biochem. Pharmacol. 37, 1487−
1495.
(21) Silva, J. M., and O’Brien, P. J. (1993) Molecular mechanisms of
SR 4233-induced hepatocyte toxicity under aerobic versus hypoxic
conditions. Br. J. Cancer 68, 484−491.
(22) Laderoute, K., and Rauth, A. M. (1986) Identification of two
major reduction products of the hypoxic cell toxin 3-amino-1,2,4-
benzotriazine-1,4-dioxide. Biochem. Pharmacol. 35, 3417−3420.
(23) Walton, M. I., and Workman, P. (1993) Pharmacokinetics and
bioreductive metabolism of the novel benzotriazine di-N-oxide hypoxic
cell cytotoxin tirapazamine (WIN 59075, SR 4233, NSC 130181) in
mice. J. Pharmacol. Exp. Ther. 265, 938−947.
(24) Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K., and
Lee, W. W. (1986) SR 4233: a new bioreductive agent with high
selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol.
Phys. 12, 1239−1242.
(25) Zeman, E. M., Baker, M. A., Lemmon, M. J., Pearson, B. A.,
Adams, J. A., Brown, J. M., Lee, W. W., and Tracy, M. (1989)
Structure-activity relationships for benzotriazine di-N-oxides. Int. J.
Radiat. Oncol. Biol. Phys 16, 977−981.
(26) Brown, J. M. (1993) SR4233 (Tirapazamine): a new anticancer
drug exploiting hypoxia in solid tumours. Br. J. Cancer 67, 1163−1170.
(27) Evans, J. W., Chernikova, S. B., Kachnic, L. A., Banath, J. P.,
Sordet, O., Delahoussaye, Y. M., Treszezamsky, A., Chon, B. H., Feng,
Z., Gu, Y., Wilson, W. R., Pommier, Y., Olive, P. L., Powell, S. N., and
Brown, J. M. (2008) Homologous recombination is the principal
pathway for the repair of DNA damage induced by tirapazamine in
mammalian cells. Cancer Res. 68, 257−265.
(28) Birincioglu, M., Jaruga, P., Chowdhury, G., Rodriguez, H.,
Dizdaroglu, M., and Gates, K. S. (2003) DNA base damage by the
antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide
(tirapazamine). J. Am. Chem. Soc. 125, 11607−11615.
(2) Ismail, M. M. F., Amin, K. M., Naoman, E., Soliman, D. H., and
Ammar, Y. A. (2010) New quinoxaline 1,4-dioxides: anticancer and
hypoxia-selective agents. Eur. J. Med. Chem. 45, 2733−2738.
́
(3) Lavaggi, M. L., Cabrera, M., Gonzalez, M., and Cerecetto, H.
(2008) Differential enzymatic reductions governing the differential
hypoxia-selective cytotoxicities of phenazine 5,10-dioxides. Chem. Res.
Toxicol. 21, 1900−1906.
(4) Hicks, K. O., Siim, B. G., Jaiswal, J. K., Pruijin, F. B., Fraser, A. M.,
Patel, R., Hogg, A., Liyanage, H. D. S., Dorie, M. J., Brown, J. M.,
Denny, W. A., Hay, M. P., and Wilson, W. R. (2010) Pharmacokinetic/
pharmacodynamic modeling identifies SN30000 and SN29751 as
tirapazamine analogues with improved tissue penetration and hypoxic
cell killing in tumors. Clin. Cancer Res. 16, 4946−4957.
(5) Hay, M. P., Gamage, S. A., Kovacs, M. S., Pruijn, F. B., Anderson,
R. F., Patterson, A. V., Wilson, W. R., Brown, J. M., and Denny, W. A.
(2003) Structure-activity relationships of 1,2,4-benzotriazine 1,4-
dioxides as hypoxia-selective analogues of tirapazamine. J. Med.
Chem. 46, 169−182.
(6) Hay, M. P., Hicks, K. O., Pchalek, K., Lee, H. H., Blaser, A.,
Pruijn, F. B., Anderson, R. F., Shinde, S. S., Wilson, W. R., and Denny,
W. A. (2008) Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective
cytotoxins. J. Med. Chem. 51, 6853−6865.
(7) Solano, B., Junnotula, V., Marin, A., Villar, R., Burguete, A.,
Vicente, E., Perez-Silanes, S., Monge, A., Dutta, S., Sarkar, U., and
Gates, K. S. (2007) Synthesis and biological evaluation of new 2-
arylcarbonyl-3-trifluoromethylquinoxaline 1,4-dioxide derivatives and
their reduced analogues. J. Med. Chem. 50, 5485−5492.
(8) Wilson, W. R., and Hay, M. P. (2011) Targeting hypoxia in
cancer therapy. Nat. Rev. Cancer 11, 393−409.
(9) Marcu, L., and Olver, I. (2006) Tirapazamine: from the bench to
clinical trials. Curr. Clin. Oncol. 1, 71−79.
(10) Rischin, D., Hicks, R. J., Fisher, R., Binns, D., Corry, J.,
Porceddu, S., and Peters, L. J. (2006) Prognostic significance of [18F]-
misonidazole positron emission tomography−detected tumor hypoxia
in patients with advanced head and neck cancer randomly assigned to
chemoradiation with or without tirapazamine: a substudy of Trans-
Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24,
2098−2104.
(11) Rischin, D., Peters, L. J., O’Sullivan, B., Giralt, J., Fisher, R.,
Yuen, K., Trotti, A., Bernier, J., Bourhis, J., Ringash, J., Henke, M., and
Kenny, L. (2010) Tirapazamine, cisplatin, and radiation versus
cisplatin and radiation for advanced squamous cell carcinoma of the
head and neck (TROG 02.02, HeadSTART): a phase III trial of the
trans-tasman radiation oncology group. J. Clin. Oncol. 28, 2989−2995.
(29) Daniels, J. S., and Gates, K. S. (1996) DNA cleavage by the
antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (SR4233):
evidence for involvement of hydroxyl radical. J. Am. Chem. Soc. 118,
3380−3385.
204
dx.doi.org/10.1021/tx2004213 | Chem. Res. Toxicol. 2012, 25, 197−206