The Journal of Organic Chemistry
NOTE
53.0; FT-IR (KBr) 3614, 3109, 2949, 2809, 1719, 1628, 1580, 1500, 1474,
1449, 1406, 1361,1309, 1293, 1266, 1235, 1186, 1061, 1037, 1021, 953,
754, 623, 587, 455, 436, 411 cmꢀ1; UV/vis (MeOH) λmax (log ε) 243 nm
(0.9), 250,sh (0.9), 260,sh (0.7), 271, sh (0.3), 291 (1.1), 301 (1.2);
HRMS (ESI) m/z calcd for C20H14N6Na 397.11722, found 397.11649.
2,6,12-Trihydrotripty[2,3-d:6,7-d0:12,13-d00]triazole (5b).25
Tris-nickelsalphen 7. In a screw-capped vial, hexaammonium salt
4 (50 mg, 0.072 mmol), salicylaldehyde (130 mg, 0.55 mmol), nickel
acetate tetrahydrate (60 mg, 0.21 mmol), and potassium acetate (60 mg,
0.66 mol) were suspended in 6 mL of ethanol and the mixture heated for
16 h at 90 °C. After the mixture was cooled to room temperature, the
wine-red precipitate was collected on a B€uchner funnel, washed with
ethanol (3 ꢁ 2 mL), and dried in the vacuum stream to obtain 7 as a
Hexaammonium salt 4 7H2O (140 mg, 0.1 mmol) and potassium
3
1
wine-red solid (123 mg, 68%): mp >400 °C; H NMR (500 MHz,
acetate (120 mg, 0.6 mmol) were dissolved in water (4 mL), and a
solution of sodium nitrite (55 mg, 0.8 mmol, in 1 mL water) was added
dropwise at room temperature. Immediately, a tan solid started to
precipitate. After the reaction mixture was stirred for another 16 h at
room temperature, the precipitate was collected on a B€uchner funnel
and washed with water (3 ꢁ 4 mL). After drying in vacuo, 5b remained
DMSO-d6, 375 K) δ 8.62 (s, 6H), 8.24 (s, 6H), 7.37 (s, 6H), 5.75 (s,
2H), 1.41 (s, 54H), 1.33 (s, 54H). FT-IR (KBr) 2956, 2906, 2868, 1618,
1586, 1525, 1467, 1426, 1385, 1358, 1331, 1269, 1251, 1234, 1199, 1178,
1129, 1058, 1026, 938, 910, 864, 840, 788, 751, 676, 636, 574, 541,
506 cmꢀ1; UV/vis (DMF) λmax (log ε) 386 nm (2.0), 405,sh (1.9), 493
(1.6); HRMS (ESI) m/z calcd for C110H1134N6O6Ni3 1808.84198,
found 1808.84155. Anal. Calcd for C110H134N6O6Ni3: C, 61.74; H, 6.49.
Found: C, 61.61; H, 6.23.
1
as pale tan solid (46 mg, 61%): mp >400 °C; H NMR (400 MHz,
DMSO-d6) δ 15.57 (s, br, 3H), 8.09 (s, br, 3H), 7.87(s, br, 3H), 6.08 (s,
br, 2H); 13C NMR (100 MHz, DMSO-d6) δ 143.4 (br), 142.6, 140.0
(br),131.6, 113.4, 106.2, 52.2; FT-IR (KBr): 3388, 3161, 2985, 2905,
2796, 1630, 1587, 1506, 1446, 1389, 1293, 1267, 1243, 1195, 1078, 995,
882, 754, 587, 454, 404 cmꢀ1; UV/vis (DMF) λmax (log ε) 294 nm
(1.4), 303 (1.4); HRMS (ESI) m/z calcd for C20H11N9 378.12102,
found 378.12101.
’ ASSOCIATED CONTENT
Supporting Information. 1H and 13C NMR spectra of all
S
b
new compounds. MALDI-TOF MS spectra of 7 and crystal-
lographic data of 3. This material is available free of charge via the
2,3,6,7,12,13-Hexahydroxy-2,6,12-trihydrotripty[2,3-d:6,7-d0:
12,13-d00]tripyrazyl (6a):25. Hexaammonium salt 4 7H2O (140 mg,
3
0.19 mmol) and diethyl oxalate (0.1 mL) were dissolved in water
(6 mL) and vigorously stirred at 100 °C. After 20 h, the reaction mixture
was cooled to room temperature and the off-white solid collected on a
B€uchner funnel and washed with water (3 ꢁ 4 mL). After being dried in
vacuo, 6a remained as an off-white solid (105 mg, 95%): mp >400 °C;
1H NMR (500 MHz, DMSO-d6) δ 11.88 (s, 6H), 7.17 (s, 6H), 5.71
(s, 2H); 13C NMR (126 MHz, 375 K, DMSO-d6) δ 155.2, 139.9, 122.3,
110.7, 50.1; FT-IR (KBr) 3443, 3177, 3060, 2952, 1689, 1481, 1454,
1390, 1303, 1245, 1193, 1095, 890, 795, 646, 537, 462 cmꢀ1; UV/vis
(DMF) λmax (log ε) 329 nm (1.0), 341 (1.0), 356,sh (0.8); HRMS (ESI)
m/z calcd for C26H14N6O6Na 529.08670, found 529.08606.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: michael.mastalerz@uni-ulm.de.
’ ACKNOWLEDGMENT
The “Fond der Chemischen Industrie (FCI)” and the “Deutsche
Forschungsgemeinschaft (DFG, Project MA4061/4-1)” are grate-
fully acknowledged for financial support. We also thank the German
Academic Exchange Sevice (DAAD) for a scholarship for M.C. in
the frame of the IASTE-program (D/10/1068/1). Solvay Fluor
GmbH is acknowledged for the donation of chemicals. M.M. thanks
Prof. T. M. Klap€otke (LMU Munich) for helpful discussions.
2,6,12-Trihydrotripty[2,3-d:6,7-d0:12,13-d00]tripyrazyl (6b).25
Hexaammonium salt 4 7H2O (155 mg, 0.22 mmol), potassium acetate
3
(140 mg, 1.4 mmol), and 2,3-dihydroxydioxane (90 mg, 0.75 mmol) were
suspended in THF (6 mL) and stirred at room temperature for 19 h. The
reaction mixture was filtered through a plug of silica and washed with THF.
Solvent was removed at the rotary evaporator to obtain 230 mg of a pale
yellow solid. The solid was digested in 15 mL of light petroleum ether,
filtered, and washed with petroleum ether (3 ꢁ 5 mL). The residue was
dried in vacuo to give 6b as a pale yellow solid (67 mg, 75%): mp >400 °C;
1H NMR (400 MHz, CDCl3) δ 8.78 (s, 6H), 8.23 (s, 6H), 6.15 (s, 2H).
Analytical data are in accordance to those previous reported.9a,14a
’ REFERENCES
(1) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942,
64, 2649–2653.
(2) (a) Chong, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2009, 38,
3301–3315. (b) Zhao, L.; Li, Z.; Wirth, T. Chem. Lett. 2010, 39, 658–668.
(3) Harada, N.; Uda, H. J. Chem. Soc., Perkin Trans. 2 1989,
1449–1453.
2,3,6,7,12,13-Hexa(40-methoxyphenyl)-2,6,12-trihydrotripty-
[2,3-d:6,7-d0:12,13-d00]tripyrazyl (6c).25 In a screw-capped vial hex-
(4) (a) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120,
5321–5322. (b) Zhao, D.; Swager, T. M. Org. Lett. 2005, 7, 4357–4360.
(c) Zhu, Z.; Swager, T. M. Org. Lett. 2001, 3, 3471–3474. (d) Long, T. M.;
Swager, T. M. J. Am. Chem. Soc. 2003, 125, 14113–14119. (e) Perepichka,
D. F.; Bendikov, M.; Meng, H.; Wudl, F. J. Am. Chem. Soc. 2003,
125, 10190–10191.
(5) Kelly, T. R.; Cai, X.; Damkaci, F.; Panicker, S. B.; Tu, B.; Bushell,
S. M.; Cornella, I.; Pigott, M. J.; Salives, R.; Cavero, M.; Zhao, Y.; Jasmin,
S. J. Am. Chem. Soc. 2007, 129, 376–386.
aammonium salt 4 7H2O (67 mg, 0.097 mmol), anisil (90 mg, 0.33 mmol),
3
and potassium acetate (60 mg, 0.61 mmol) were suspended in 6 mL of
ethanol, and the mixture was heated to 100 °C for three days. After the
mixture was cooled to room temperature, the yellow precipitate was collected
on a Buchner funnel, washed with methanol (3 ꢁ 4 mL), and dried in vacuo.
The remaining solid was purified by column chromatography (SiO2, ethyl
acetate/light petroleum ether 3:1 v/v) to give, after removal of solvent and
subsequent drying in vacuum, 6c as a yellow solid (96 mg, 95%): mp
252ꢀ255 °C; 1H NMR (500 MHz, CDCl3) δ 8.21 (s, 6H), 7.44 (d, J = 8.8
Hz, 12H), 6.84 (d, J = 8.8 Hz, 12H), 6.05 (s, 2H), 3.81 (s, 18H); 13C NMR
(101 MHz, CDCl3) δ 160.1, 152.8, 143.7, 140.2, 131.6, 131.2, 123.6, 113.7,
55.3, 53.2; FT-IR (KBr) 2928, 2834, 1607, 1577, 1514, 1452, 1351, 1295,
1252, 1175, 1110, 1096, 1059, 1029, 892, 834, 762, 735, 695, 659, 602, 565,
496, 412 cmꢀ1; UV/vis (CH2Cl2) λmax (log ε) 261 nm (2.2), 281 sh, (2.1),
385 (1.7); MS (MALDI-TOF) m/z 1048 (M+). Anal. Calcd for
C68H50N6O6 (1047.16): C, 77.99; H, 4.81; N, 8.03. Found: C, 77.74; H,
5.04; N, 8.09.
(6) See, for instance: Zhou, X.-Z.; Chen, C.-F. J. Am. Chem. Soc.
2005, 127, 13158–13159.
(7) For a review covering macrocycles based on triptycenes, see:
Chen, C.-F. Chem. Commun. 2011, 47, 1674–1688.
(8) (a) Mastalerz, M. Chem. Commun. 2008, 4756–4758. (b)
Mastalerz, M.; Schneider, M. W.; Oppel, I. M.; Presly, O. Angew. Chem.,
Int. Ed. 2011, 50, 1046–1051.
(9) (a) Chong, J. H.; MacLachlan, M. J. Inorg. Chem. 2006, 45,
1442–1444. (b) Vagin, S.; Ott, A.; Weiss, H.-C.;Karbach, A.; Volkmer, D.;
6392
dx.doi.org/10.1021/jo200843v |J. Org. Chem. 2011, 76, 6389–6393