Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
kanomata@waseda.jp; inoue@chem.eng.osaka-u.ac.jp
’ ACKNOWLEDGMENT
This work was supported by Grant-in-Aid (A) 21245011 (Y.I.),
(B) 21350119 (T.W.), and (B) 23350018 (T.M.) from the Japan
Society for the Promotion of Science, by a Mitsubishi Chemical
Corporation Fund (T.M.), and also by a Waseda University Grant
for Special Research Projects 2009A-605 (N.K.).
Figure 2. Fluorescence spectra of (a) 3a (0.038 mM) in the presence of
0À0.8 M 1Z (λex 270 nm) and (b) 3a (0.027 mM) (λex 290 nm) in the
presence of 0À0.8 M 2ZZ in MCH at room temperature. Inset: exciplex
emission obtained by spectral subtraction.
’ REFERENCES
(1) (a) Rau, H. Chem. Rev. 1983, 83, 535. (b) Inoue, Y. Chem. Rev.
1992, 92, 741.(c) Everitt, S. R. L.; Inoue, Y. Organic Molecular Photo-
chemistry; Ramamurthy, V., Schanze, K. S., Eds.; Marcel Dekker: New
York, 1999; pp 71À130. (d) Griesbeck, A. G.; Meierhenrich, U. J. Angew.
Chem., Int. Ed. 2002, 41, 3147.(e) Inoue, Y., Ramamurthy, V., Eds. Chiral
Photochemistry; Marcel Dekker: New York, 2004. (f) Ramamurthy, V.,
Inoue, Y., Eds. Supramolecular Photochemistry; Wiley: New York, 2011.
(2) (a) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. J. Am. Chem.
Soc. 1989, 111, 6480. (b) Inoue, Y.; Yamasaki, T.; Yokoyama, N.; Tai, A.
J. Org. Chem. 1992, 57, 1332. (c) Inoue, Y.; Yamasaki, N.; Yokoyama, T.;
Tai, A. J. Org. Chem. 1993, 58, 1011.
(3) (a) Inoue, Y.; Matsushima, E.; Wada, T. J. Am. Chem. Soc. 1998,
120, 10687. (b) Kaneda, M.; Nakamura, A.; Asaoka, S.; Ikeda, H.; Mori,
T.; Wada, T.; Inoue, Y. Org. Biomol. Chem. 2003, 1, 4435.
(4) Inoue, Y.; Ikeda, H.; Kaneda, M.; Sumimura, T.; Everitt, S. R. L.;
Wada, T. J. Am. Chem. Soc. 2000, 122, 406.
(5) (a) Goto, S.; Takamuku, S.; Sakurai, H.; Inoue, Y.; Hakushi, T.
J. Chem. Soc., Perkin Trans. 2 1980, 1672. (b) Inoue, Y.; Tsuneishi, H.;
Hakushi, T.; Tai, A. J. Am. Chem. Soc. 1997, 119, 472. (c) Hoffmann, R.;
Inoue, Y. J. Am. Chem. Soc. 1999, 121, 10702. (d) Asaoka, S.; Horiguchi,
H.; Wada, T.; Inoue, Y. J. Chem. Soc., Perkin Trans. 2 2000, 737. (e)
Asaoka, S.; Ooi, M.; Jiang, P.; Wada, T.; Inoue, Y. J. Chem. Soc., Perkin
Trans. 2 2000, 77.
(6) (a) Allinger, N. L.; Sprague, J. T.; Liljefors, T. J. Am. Chem. Soc.
1974, 96, 5100. (b) Furo, T.; Mori, T.; Wada, T.; Inoue, Y. J. Am. Chem.
Soc. 2005, 127, 8242.
(7) (a) Schmidtchen, F. P.; Bergev, M. Chem. Rev. 1997, 97, 1609.
(b) Ariga, K.; Terasaka, Y.; Sakai, D.; Tsuji, H.; Kikuchi, J. J. Am. Chem.
Soc. 2000, 122, 7835.
(8) Gibson, S. E.; Knight, J. D. Org. Biomol. Chem. 2003, 1, 1256.
(9) Dahmen, S. Org. Lett. 2004, 6, 2113.
(10) Kanomata, N.; Sakaguchi, R.; Sekine, K.; Yamashita, S.; Tanaka,
H. Adv. Synth. Catal. 2010, 352, 2966.
(11) (a) Kanomata, N.; Nakata, T. Angew. Chem., Int. Ed. Engl. 1997,
36, 1207. (b) Kanomata, N.; Nakata, T. J. Am. Chem. Soc. 2000,
122, 4563.
(12) (a) Kanda, K.; Endo, K.; Shibata, T. Org. Lett. 2010, 12, 1980.
(b) Araki, T.; Hojo, D.; Noguchi, K.; Tanaka, K. Synlett 2011, 539.
(13) (a) Ueda, T.; Kanomata, N.; Machida, H. Org. Lett. 2005,
7, 2365. (b) Kanomata, N.; Mishima, G.; Onozato, J. Tetrahedron Lett.
2009, 50, 409.
(14) Royzen, M.; Yap, G. P. A.; Fox, J. P. J. Am. Chem. Soc. 2008,
130, 3760.
(15) Pirrung, M. C.; Bleecker, A. B.; Inoue, Y.; Rodriguez, F.;
Table 3. Fluorescence Quenching of 3a, 3b, and 4b by 1Z or
2ZZ
λmax
/
kq/108
λexciplex/
sensitizer
nm
τ/ns quencher kqτ/MÀ1
M
À1 sÀ1
nm
3a
334
1.3a
1.1d
0.6g
1Zb
2ZZc
1Ze
2ZZf
1Zh
0.27
0.12
0.17
0.08
0.20
2.1
0.9
1.5
0.7
3.3
398
417
401
418
À
3b
4b
333
313
a [3a] = 0.27 mM in MCH at 25 °C. b [3a] = 0.038 mM in MCH at 25
°C. c [3a] = 0.027 mM in MCH at room temperature. d [3b] = 0.25 mM
in MCH at 25 °C. e [3b] = 0.025 mM in MCH at 25 °C. [3b] =
f
0.025 mM in MCH at room temperature. g [4b] = 0.61 mM in MCH at
room temperature. h [4b] = 0.061 mM in MCH at room temperature.
reaction. The major difference from the conventional point-
chiral photosensitization systems is the selective shielding of
one of the enantiotopic faces of chiral cyclophanes 3 by the
decamethylene bridge, which both enthalpically and entropically
renders the approach and the subsequent geometrical isomeriza-
tion of substrate 1Z or 2ZZ more enantioface-selective to give
high ee’s. The inherently low E/Z ratios obtained upon para-
cyclophane sensitization may be readily overcome by continu-
ously circulating the photolyzed solution through a column
loaded with AgNO3/SiO2 to selectively extract the (E)-isomer
from the E/Z mixture during the period of irradiation.14 Chiral
cyclophane sensitizers are more suitable for the photoisomeriza-
tion of smaller-sized cycloalkenes that afford highly strained (E)-
isomers stabilized only at low temperatures but are expected to
experience less steric hindrance upon exciplex formation giving
higher E/Z ratios. It is also interesting to note that strained (E)-
cyclooctenes 1E and 2EZ are potent inhibitors of the ripening
action of ethylene as a plant hormone and (R)-1E is more
effective than the antipode,15 rendering the present method
attractive in relevant research. The concept of planar-to-planar
chirality transfer in the excited state has established a new scope
of photochirogenesis and can be a useful and powerful tool in a
more general context of (supra)molecular photochirogenesis.
Sugawara, N.; Wada, T.; Zou, Y.; Binder, B. M. Chem. Biol. 2008, 15, 313.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and a
b
comprehensive list of the original data used in Figure 1. This
acs.org.
10381
dx.doi.org/10.1021/ja203781f |J. Am. Chem. Soc. 2011, 133, 10379–10381