Journal of the American Chemical Society
COMMUNICATION
building blocks. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This research was supported by the NIH Cell Migration
Consortium (GM064346). B.N.G. was supported by the NIGMS
Biotechnology Training Grant (T32-GM08334), and A.A. was
supported by a postdoctoral fellowship from the Swiss National
Science Foundation.
’ REFERENCES
(1) Hunter, T. Cell 2000, 100, 113–127.
(2) Iorns, E.; Lord, C. J.; Turner, N.; Ashworth, A. Nat. Rev. Drug
Discovery 2007, 6, 556–568.
(3) Tarrant, M. K.; Cole, P. A. Annu. Rev. Biochem. 2009, 78, 797–825.
(4) Ellis-Davies, G. C. Nat. Methods 2007, 4, 619–628.
(5) Rothman, D. M.; Shults, M. D.; Imperiali, B. Trends Cell Biol.
2005, 15, 502–510.
(6) Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B. Org.
Lett. 2002, 4, 2865–2868.
Figure 4. Wip1 phosphatase activity. Wip1 was incubated with the
DEACM-caged substrate (30 μM) and the NPE-caged inhibitor (5 μM).
No activity occurred before irradiation (region A), but exposure to
420 nm (orange bar) initiated Wip1 activity (region B). Subsequent
irradiation at 365 nm (yellow bar) completely abolished the activity
(region C). When the assay was irradiated only at 420 nm and not
subjected to the 365 nm irradiation, the reaction continued.
(7) Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B.
J. Org. Chem. 2003, 68, 6795–6798.
(8) Hahn, M. E.;Muir, T.W.Angew. Chem., Int. Ed. 2004, 43,5800–5803.
(9) Humphrey, D.; Rajfur, Z.; Vazquez, M. E.; Scheswohl, D.; Schaller,
M. D.; Jacobson, K.; Imperiali, B. J. Biol. Chem. 2005, 280, 22091–22101.
(10) Nguyen, A.; Rothman, D. M.; Stehn, J.; Imperiali, B.; Yaffe,
M. B. Nat. Biotechnol. 2004, 22, 993–1000.
(11) Vazquez, M. E.; Nitz, M.; Stehn, J.; Yaffe, M. B.; Imperiali, B.
J. Am. Chem. Soc. 2003, 125, 10150–10151.
(12) Vogel, E. M.; Imperiali, B. Protein Sci. 2007, 16, 550–556.
(13) Kotzur, N.; Briand, B.; Beyermann, M.; Hagen, V. J. Am. Chem.
Soc. 2009, 131, 16927–16931.
(14) Priestman, M. A.; Sun, L.; Lawrence, D. S. ACS Chem. Biol.
2011, 6, 377–384.
(15) Kantevari, S.; Matsuzaki, M.; Kanemoto, Y.; Kasai, H.; Ellis-Davies,
G. C. Nat. Methods 2010, 7, 123–125.
(16) Kaplan, J. H.; Forbush, B., III; Hoffman, J. F. Biochemistry 1978,
Alternatively, as demonstrated through the Wip1 system, this
sequential uncaging approach can be implemented to control
processes that are regulated by phosphorylation events that exert
opposing effects. In this regard, the sequential uncaging approach
could be adapted to investigate the Rho family GTPase Rac,
which can be activated and deactivated following phosphoryla-
tion of associated regulatory proteins.25,26
While the studies with Wip1 have demonstrated the value of
the sequential uncaging approach, this method could be further
improved by decreasing the spectral overlap between the two
caging groups. Although the DEACM group exhibits one of the
most red-shifted absorption spectra among reported caging
groups,17,19 the development of new derivatives that are activated
at even higher wavelengths and that undergo efficient photolysis
will increase the specificity of the first irradiation event when the
NPE group is used in conjunction with these analogues.
In summary, we have developed a method for interrogating
multiple sites of peptide or protein phosphorylation in one
system by exploiting the distinct photophysical properties of
the NPE and DEACM caging groups. Photolysis of the DEACM
group at 420 nm efficiently releases it from the phosphopeptide
while exerting a negligible effect over the NPE-caged peptide.
A second irradiation event can then be used to liberate the NPE
group. The DEACM-caged phosphoamino acid building blocks can
be conveniently incorporated into any phosphopeptide or phos-
phoprotein that can be accessed by synthetic approaches, enabling
investigations either in isolation or in concert with an NPE-caged
molecule. This versatile method will facilitate detailed studies of
previously inaccessible complex phosphorylation pathways.
17, 1929–1935.
(17) Hagen, V.; Bendig, J.; Frings, S.; Eckardt, T.; Helm, S.; Reuter,
D.; Kaupp, U. B. Angew. Chem., Int. Ed. 2001, 40, 1045–1048.
(18) Pinheiro, A. V.; Baptista, P.; Lima, J. C. Nucleic Acids Res. 2008,
36, No. e90.
(19) Hagen, V.; Frings, S.; Wiesner, B.; Helm, S.; Kaupp, U. B.;
Bendig, J. ChemBioChem 2003, 4, 434–442.
(20) Lu, X.; Nguyen, T. A.; Moon, S. H.; Darlington, Y.; Sommer,
M.; Donehower, L. A. Cancer Metastasis Rev. 2008, 27, 123–135.
(21) Yamaguchi, H.; Minopoli, G.; Demidov, O. N.; Chatterjee, D. K.;
Anderson, C. W.; Durell, S. R.; Appella, E. Biochemistry 2005, 44, 5285–5294.
(22) Yamaguchi, H.; Durell, S. R.; Feng, H.; Bai, Y.; Anderson, C. W.;
Appella, E. Biochemistry 2006, 45, 13193–13202.
(23) Shembekar, V. R.; Chen, Y.; Carpenter, B. K.; Hess, G. P.
Biochemistry 2005, 44, 7107–7114.
(24) Turner, C. E. Nat. Cell Biol. 2000, 2, E231–E236.
(25) Mehta, D.; Rahman, A.; Malik, A. B. J. Biol. Chem. 2001, 276,
22614–22620.
(26) Ohta, Y.; Hartwig, J. H.; Stossel, T. P. Nat. Cell Biol. 2006,
8, 803–814.
’ ASSOCIATED CONTENT
S
Supporting Information. Supporting figures, experimen-
b
tal methods, and NMR characterization of the caged amino acid
11041
dx.doi.org/10.1021/ja2028074 |J. Am. Chem. Soc. 2011, 133, 11038–11041