Journal of the American Chemical Society
COMMUNICATION
In summary, we have developed an unprecedented type of
cycloaddition; o-arylcarboxybenzonitrile reacted with alkynes to
afford coumarins over a nickel catalyst. The reaction represents
the first example of intermolecular cycloaddition involving the
cleavage of two carbonÀcarbon σ bonds of two independent
CÀCN and CÀCO bonds. Efforts to expand the scope of the
reaction and detailed studies to elucidate its underlying mechan-
ism are underway.9
1996, 118, 6305. (b) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000,
2, 3643. (c) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2003, 68, 9423.
(5) (a) Maruoka, K.; Itoh, T.; Yamamoto, H. J. Am. Chem. Soc. 1985,
107, 4573. (b) Maruoka, K.; Araki, Y.; Yamamoto, H. J. Am. Chem. Soc.
1988, 110, 2650.
(6) The nickel-catalyzed reaction of 1d with 2a also afforded 3aa in
65% yield along with 3-phenyl-2-cyano-4-octene in 63% yield. This
result may suggest that the electron-donating dimethylamino substitu-
ent on 1a slows down the side reaction; the nickel-catalyzed insertion
reaction of the resulting 4-dimethylaminobenzonitrile 4a to 2a proceeds
at a slower rate than that of benzonitrile. For effects of an electron-
donating substituent on benzonitrile in the nickel-catalyzed insertion
reaction to alkynes, see ref 3a.
(7) The reactions of 4-octyne with o-arylcarboxybromobenzene or o-
arylcarboxyanisole in place of o-arylcarboxybenzonitrile did not afford
any cycloadduct.
(8) For examples of transition-metal-catalyzed reactions for synth-
esis of quinolones, see: (a) Kadnikov, D. V.; Larock, R. C. J. Org. Chem.
2004, 69, 6772. (b) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem.
Soc. 2010, 132, 9602.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures in-
b
cluding spectroscopic and analytical data of the new compounds.
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
tkuraha@orgrxn.mbox.media.kyoto-u.ac.jp; matsubar@orgrxn.
mbox.media.kyoto-u.ac.jp
(9) To probe the nature of the reaction mechanism, the reaction of 8
was performed in the presence of a nickel catalyst. In this case, both
cycloadduct 3aa and aryl cyanide 4a were not obtained at all, and 8 was
recovered quantitatively. This result may indicate that the present
cycloaddition proceeds with the initial elimination of aryl cyanide 4
followed by the reaction with alkyne 2.
’ ACKNOWLEDGMENT
This work was supported by Grants-in-Aid from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan. T.K.
also acknowledges support from the Asahi Glass Foundation,
Kansai Research Foundation, and Toyota Physical and Chemical
Research Institute.
’ REFERENCES
(1) For reviews on carbonÀcarbon bond activation with a transition
metal, see: (a) Bonesi, S. M.; Fagnoni, M. Chem.—Eur. J. 2010, 16,
13572. (b) Neꢀcas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (c)
Satoh, T.; Miura, M. Top. Organomet. Chem. 2005, 14, 1. (d) Jun, C.-H.
Chem. Soc. Rev. 2004, 33, 610. (e) van der Boom, M. E.; Milstein, D.
Chem. Rev. 2003, 103, 1759. (f) Murakami, M.; Ito, Y. Top. Organomet.
Chem. 1999, 3, 97. (g) Rybtchinski, B.; Milstein, D. Angew. Chem., Int.
Ed. 1999, 38, 870.
(2) For pioneering examples of nickel-catalyzed cycloaddition in-
volving CÀCO bond activation, see: (a) Murakami, M.; Ashida, S.;
Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932. (b) Murakami, M.;
Ashida, S. Chem. Commun. 2006, 4599. (c) Ashida, S.; Murakami, M.
Bull. Chem. Soc. Jpn. 2008, 81, 885. (d) Murakami, M.; Makino, M.;
Ashida, S.; Matsuda, T. Bull. Chem. Soc. Jpn. 2006, 79, 1315. (e)
Murakami, M.; Ashida, S.; Matsuda, T. Tetrahedron 2006, 62, 7540.
(3) For examples of nickel-catalyzed CÀCN bond activation in
insertion reactions with carbonÀcarbon unsaturated compounds, see:
(a) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904. (b)
Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007,
129, 2428. (c) Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.;
Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116. (d) Hirata, Y.; Yukawa, T.;
Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964.
For studiesonan oxidativeaddition of a CÀCNbond tonickel(0), see:(e)
Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004,
ꢁ
126, 3627. (f) Garcia, J. J.; Arꢁevalo, A.; Brunkan, N. M.; Jones, W. D.
ꢁ
Organometallics 2004, 23, 3997. (g) Garcia, J. J.; Brunkan, N. M.; Jones,
W. D. J. Am. Chem. Soc. 2002, 124, 9547. (h) Favero, G.; Morvillo, A.;
Turco, A. J. Organomet. Chem. 1983, 241, 251. (i) Abla, M.; Yamamoto, T.
J. Organomet. Chem. 1997, 532, 267. (j) Parshall, G. W. J. Am. Chem. Soc.
1974, 96, 2360. (k) Morvillo, A.; Turco, A. J. Organomet. Chem. 1981,
208, 103.
(4) For examples of transition-metal-catalyzed reactions for synth-
esis of coumarins, see: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
11068
dx.doi.org/10.1021/ja203829j |J. Am. Chem. Soc. 2011, 133, 11066–11068