Organometallics
NOTE
’ CONCLUSION
3 3CH2Cl2. This material is available free of charge via the
3
The formation of compound 3 shows that the ligand C-
(dppm)2 is able to stabilize complexes with two d8-metals at
the CDP carbon, leading to the first example for this class of
ligands. An extended synthetic potential was revealed by CÀH
activation of C(dppm)2, which not only behaves as a PCP ligand
but may form additional bonds to metal centers via the aliphatic
carbons of the dppm subunits.
’ REFERENCES
(1) Ramirez, F.; Desai, N. B.; Hansen, B.; McKelvie, N. J. Am. Chem.
Soc. 1961, 83, 3539.
(2) Tonner, R.; Oexler, F.; Neum€uller, B.; Petz, W.; Frenking, G.
Angew. Chem., Int. Ed. 2006, 45, 8038.
(3) Recent review on CDPs: Petz, W.; Frenking, G. Top. Organomet.
Chem. 2010, 30, and references therein.
(4) (a) Schmidbaur, H.; Gasser, O. Angew. Chem., Int. Ed. Engl. 1976,
15, 502. (b) Schmidbaur, H.; Scherbaum, F.; Huber, B.; Mueller, G.
Angew. Chem., Int. Ed. Engl. 1988, 27, 419.
(5) Vicente, J.; Singhal, A. R.; Jones, P. G. Organometallics 2002,
21, 5887.
(6) Reitsamer, C.; Schuh, W.; Kopacka, H.; Wurst, K.; Peringer, P.
Organometallics 2009, 28, 6617.
(7) Stallinger, S.; Reitsamer, C.; Schuh, W.; Kopacka, H.; Wurst, K.;
Peringer, P. Chem. Commun. 2007, 510.
(8) For a recent review on pincer complexes see:The Chemistry of
Pincer Compounds; Morales-Morales, D.; Jensen, C. M., Eds., Elsevier:
Amsterdam, 2007.
(9) A scheme of the described mechanism as well as another
potential reaction pathway for the formation of 2 is shown in the
Supporting Information.
(10) A scheme of potential reaction pathways for the formation of 3
is shown in the Supporting Information.
(11) Fernandez, E. J.; Gimeno, M. C.;Jones, P. G.; Laguna, A.; Laguna,
M.; Lopez-de-Luzuriaga, J. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 87.
(12) Petz, W.; Kutschera, C.; Neum€uller, B. Organometallics 2005,
24, 5038.
(13) Kubo, K.; Jones, N. D.; Ferguson, M. J.; MacDonald, R.; Cavell,
R. G. J. Am. Chem. Soc. 2005, 127, 5314.
(14) Marrot, S.; Kato, T.; Gornitzka, H.; Baceiredo, A. Angew. Chem.,
Int. Ed. 2006, 45, 2598.
(15) Kwong, H.-L.; Yeung, H.-L.; Lee, W.-S.; Wong, W.-T. Chem.
Commun. 2006, 4841, and references therein.
(16) Bondi, A. J. Phys. Chem. 1964, 68, 441.
’ EXPERIMENTAL SECTION
The complexes 17 and [PdCl2(MeCN)2)]21 were prepared byliterature
procedures; all other reagents were obtained from commercial suppliers.
The solvents were not dried. All operations were carried out under
atmospheric conditions. X-ray data were collected on a Nonius Kappa
CCD diffractometer using graphite-monochromated Mo KR radiation (λ
= 0.71073 Å). The structures were solved by direct methods.22
31P, 1H, and 13C NMR spectra were recorded on Bruker DPX 300 and
Avance 600 NMR spectrometers and were referenced against solvent
peaks or external 85% H3PO4. In the NMR data, the atoms are labeled as
in the crystal structures. The 31P resonances of 2 and 3 were assigned on
the basis of the 31P shifts found for 1 as well as by use of the large 2J(PP)
coupling in the five-membered ring.6,7 Additional 31PÀ H correlation
1
experiments were performed, which support the assignments in 3. The
1H resonances in 3 could be unambiguously assigned to the methine and
methylene protons by a 1H{31P} experiment. The axial and equatorial
protons of the CH2 group were assigned due to their different coupling
pattern, in particular due to observation of the favorable long-range
coupling of the equatorial H3b toward P2 along the W-type ligand
backbone. No 1H NMR data could be obtained for 2 due to massive line
broadening at room temperature and immediate precipitation of
2 2CH2Cl2 during cooling experiments. The 13C shifts in 3—in
3
particular the CDP carbon—could be observed only indirectly by use
1
of 13CÀ H correlation due to the limited solubility of this compound.
[Pd2Cl5(CH(dppm)2)] (2): Compound 2 precipitates upon heating
a mixture of PdCl2(MeCN)2 (13.0 mg, 0.05 mmol) and 1 (49.7 mg,
0.05 mmol) in CH2Cl2 (0.5 mL) to 60 °C for 24 h. The brownish
microcrystalline material is separated and dried in vacuo (55 mg, 94%).
(17) Bercaw, J. E.; Durrell, A. C.; Gray, H. B.; Green, J. C.; Hazari,
N.; Labinger, J. A.; Winkler, J. R. Inorg. Chem. 2010, 49, 1801.
(18) Rashidi, M.; Vittal, J. J.; Puddephatt, R. J. J. Chem. Soc., Dalton
Trans. 1994, 1283.
Single crystals of the composition C51H45Cl5P4Pd2 2CH2Cl2 were
3
obtained upon standing of a mixture of PdCl2(MeCN)2 and 1 in
CH2Cl2 at ambient temperature for several days.
31P{1H} NMR (CD2Cl2): δ 6.0 (J(P1P2) = 41, P1), 27.7 (J(P2P3) = 6,
J(P2P4) = 5, P2); 15.6 (J(P3P4) = 5, P3), 10.2 (P4). Anal. Calcd for
C51H45Cl5P4Pd2: C, 52.27; H, 3.87. Found: C, 52.0; H, 3.7.
(19) Jones, P. G.; Ahrens, B. Chem. Commun. 1998, 2307.
(20) (a) Wachtler, H.; Schuh, W.; Augner, S.; H€agele, G.; Wurst, K.;
Peringer, P. Organometallics 2008, 27, 1797. (b) Schuh, W.; H€agele, G.;
Olschner, R.; Lindner, A.; Dvortsak, P.; Kopacka, H.; Wurst, K.;
Peringer, P. J. Chem. Soc., Dalton Trans. 2002, 19. (c) Neve, F.; Ghedini,
M.; Tiripicchio, A.; Ugozzoll, F. Organometallics 1992, 11, 795.
(d) Arsenault, G. J.; Manojlovic-Muir, L.; Muir, K. W.; Puddephatt,
R. J.; Teurnicht, I. Angew. Chem., Int. Ed. Engl. 1987, 26, 86. (e) Hutton,
A. T.; Langrick, C. R.; McEwan, D. M.; Pringle, P. G.; Shaw, B. L. J.
Chem. Soc., Dalton Trans. 1985, 2121. (f) Blagg, A.; Hutton, A. T.;
Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1984, 1815. (g)
Puddephatt, R. J.; Azam, K. A.; Hill, R. H.; Brown, M. P.; Nelson, C. D.;
Moulding, R. P.; Seddon, K. R.; Grossel, M. C. J. Am. Chem. Soc. 1983,
105, 5642. (h) Puddephatt, R. J.; Thomson, M. A. Inorg. Chem. 1982,
21, 725. (i) Jensen, F. R.; Noyce, D. S.; Sederholm, C. H.; Berlin, A. J. J.
Am. Chem. Soc. 1960, 82, 1256. (j) Moritz, A. G.; Sheppard, N. Mol. Phys.
1962, 5, 361.
[Pd2Cl3(C(dppm)(Ph2CHPh2))] (3): A mixture of 2 (58.6 mg, 0.05
mmol), CH2Cl2 (0.5 mL), and water (0.5 mL) is stirred for one week. The
solid is separated, washed with CH2Cl2, and dried in vacuo. Yield: 48 mg
(82%). Single crystals of composition C51H43Cl3P4Pd2 3CH2Cl2 were
3
obtained upon layering a supersaturated solution of 2in CH2Cl2 with water.
31P{1H} NMR (CD2Cl2): δ À3.9 (J(P1P2) = 49, J(P1P3) = 3,
J(P1P4) = 16, P1), 29.0 (J(P2P3) = 13, J(P2P4) = 16, P2), 51.5
1
(J(P3P4) = 56, P3), 12.5 (P4). H NMR (CD2Cl2/MeOH) δ 2.59
(J(P1H2) = 9.7, J(P2H2) = 10.5, J(P3H2) = 9.7, J(P4H2) = 4.1, H2),
3.54 (J(H3aH3b) = 14.5, J(P2H3b) = 4.2, J(P3H3b) = 6.2, J(P4H3b) =
9.5, H3b), 6.23 (J(P3H3a) = 19.3, J(P4H3a) = 10.6, H3a), 6.45À8.37
(m, ca. 40H, Ph). 13C{1H} NMR (CD2Cl2/MeOH): δ À8.8 (C1), 6.3
(C2), 34.3 (C3). Anal. Calcd for C51H43Cl3P4Pd2: C, 55.74; H, 3.94.
Found: C, 55.4; H, 3.7.
(21) Andrews, M. A.; Chang, T. C.-T.; Cheng, Ch.-W. F.; Emge,
T. J.; Kelly, K. P.; Koetzle, T. F. J. Am. Chem. Soc. 1984, 106, 5913.
(22) Sheldrick, G. M. SHELXS-86: Program for Crystal Structure
Solutions; Universit€at G€ottingen, 1986. Sheldrick, G. M. SHELXL-97:
Program for Refinement of Crystal Structures; Universit€at G€ottingen, 1997.
’ ASSOCIATED CONTENT
S
Supporting Information. CIF data of 2 2CH2Cl2 and
b
3
3 3CH2Cl2. Schemes of potential reaction pathways for the
3
formation of 2 and 3; crystal data table of 2 2CH2Cl2 and
3
4223
dx.doi.org/10.1021/om2002975 |Organometallics 2011, 30, 4220–4223