NK, MUK and GPKR thank CSIR, New Delhi for
research fellowship.
Notes and references
1 W. S. Horne and S. H. Gellman, Acc. Chem. Res., 2008, 41, 1399.
2 (a) S. Chatterjee, R. S. Roy and P. Balaram, J. R. Soc. Interface,
2007, 4, 587; (b) B. R. Huck, J. D. Fisk and S. H. Gellman, Org.
Lett., 2000, 2, 2607; (c) S. Krauthauser, L. A. Christianson,
D. R. Powell and S. H. Gellman, J. Am. Chem. Soc., 1997, 119,
11719; (d) H. N. Gopi, R. S. Roy, S. R. Raghothama, I. L. Karle
and P. Balaram, Helv. Chim. Acta, 2002, 85, 3313; (e) U. Arnold,
M. P. Hinderaker, B. L. Nilsson, B. R. Huck, S. H. Gellman and
R. T. Raines, J. Am. Chem. Soc., 2002, 124, 8522.
3 S. De Pol, C. Zorn, C. D. Klein, O. Zerbe and O. Reiser, Angew.
Chem., Int. Ed., 2004, 43, 511.
4 (a) A. Hayen, M. A. Schmitt, F. N. Ngassa, K. A. Thomasson and
S. H. Gellman, Angew. Chem., Int. Ed., 2004, 43, 505;
(b) S. H. Choi, I. A. Guzei and S. H. Gellman, J. Am. Chem.
Soc., 2007, 129, 13780; (c) M. A. Schmitt, S. H. Choi, I. A. Guzei
and S. H. Gellman, J. Am. Chem. Soc., 2005, 127, 13130.
5 B. Jagadeesh, A. Prabhakar, G. D. Sarma, S. Chandrasekhar,
G. Chandrashekar, M. S. Reddy and B. Jagannadh, Chem.
Commun., 2007, 371.
6 M. A. Schmitt, S. H. Choi, I. A. Guzei and S. H. Gellman, J. Am.
Chem. Soc., 2006, 128, 4538.
7 C. Baldauf, R. Gunther and H. J. Hofmann, Biopolymers, 2006, 84, 408.
8 W. S. Horne, J. L. Price, J. L. Keck and S. H. Gellman, J. Am.
Chem. Soc., 2007, 129, 4178.
9 J. L. Price, W. S. Horne and S. H. Gellman, J. Am. Chem. Soc.,
2007, 129, 6376.
10 D. F. Hook, P. Bindschadler, Y. R. Mahajan, R. Sebesta, P. Kast
and D. Seebach, Chem. Biodiversity, 2005, 2, 591.
11 B. Geueke, T. Heck, M. Limbach, V. Nesatyy, D. Seebach and
H. P. E. Kohler, FEBS J., 2006, 273, 5261.
Fig. 4 Superimposed minimum energy structures from MD studies
showing side views for (a) trimer 2; (b) tetramer 4 and (c) hexamer 5
with the 11-member and 8-member hydrogen bonds shown in dotted
blue and orange lines, respectively; (for 5 side-chains are removed for
the sake of clarity). (d) Top view of 5 showing the radial disposition of
nucleobases along the helical axis.
12 (a) M. A. Schmitt, B. Weisblum and S. H. Gellman, J. Am. Chem.
Soc., 2004, 126, 6848; (b) M. A. Schmitt, B. Weisblum and
S. H. Gellman, J. Am. Chem. Soc., 2007, 129, 417.
Molecular dynamics studiesz for 2–5 have been carried out
on Insight II Discover platform by using the distances derived
from ROESY cross-peak intensities (normalised with respect
to the ROE intensity of geminal protons present in NDAs or
13 (a) J. D. Sadowsky, M. A. Schmitt, H. S. Lee, N. Umezawa,
S. Wang, Y. Tomita and S. H. Gellman, J. Am. Chem. Soc., 2005,
127, 11966; (b) J. D. Sadowsky, W. D. Fairlie, E. B. Hadley,
H. S. Lee, N. Umezawa, Z. Nikolovska-Coleska, S. Wang, D. C.
S. Huang, Y. Tomita and S. H. Gellman, J. Am. Chem. Soc., 2007,
129, 139; (c) J. D. Sadowsky, J. K. Murray, Y. Tomita and
S. H. Gellman, ChemBioChem, 2007, 8, 903; (d) W. S. Horne,
M. D. Boersma, M. A. Windsor and S. H. Gellman, Angew. Chem.,
Int. Ed., 2008, 47, 2853.
14 (a) A. M. Bruckner, P. Chakraborty, S. H. Gellman and
U. Diederichsen, Angew. Chem., Int. Ed., 2003, 42, 4395;
(b) A. M. Bruckner, M. Garcia, A. Marsh, S. H. Gellman and
U. Diederichsen, Eur. J. Org. Chem., 2003, 3555.
15 (a) P. Chakraborty and U. Diederichsen, Chem.–Eur. J., 2005, 11,
3207; (b) P. Chakraborty, A. M. Bruckner and U. Diederichsen,
Eur. J. Org. Chem., 2006, 2410; (c) A. Weiß and U. Diederichsen,
Eur. J. Org. Chem., 2007, 5531; (d) R. Srivastava, A. Kumar Ray
and U. Diederichsen, Eur. J. Org. Chem., 2009, 4793.
16 S. Chandrasekhar, G. P. K. Reddy, M. U. Kiran, Ch. Nagesh and
B. Jagadeesh, Tetrahedron Lett., 2008, 49, 2969.
17 R. Threlfall, A. Davies, N. M. Howarth, J. Fisher and R. Cosstick,
Chem. Commun., 2008, 585.
3
Phe as 1.8 A reference) and dihedral angles derived from JH
coupling constants, as the restraints. The minimum energy
structures obtained from the simulations have shown a good
convergence to 11/8 helical folds (Fig. 4), with a non-linear
(901–1301) and relatively longer H-bond distance (2.5–2.8 A)
for 8-membered H-bond.z However, the H-bond distances
are observed to be B2.4 A for 11-membered and isolated
C-terminal 8-membered H-bonds. The representative dihedral
angles for NDA residues are (f, y, c) = (ꢀ801, +1201, ꢀ901)
and for L-amino acids (f, c) = (ꢀ651, ꢀ501).
In summary, the present study reveals that the heterogeneous
backbone structures comprised of 1 : 1 NDA and L-amino acids
preferentially adopt a right-handed helical fold with rapidly
interconverting periodic 11/8-hydrogen bonded rings. The
study signifies that the NDA organized spatial arrangement
of the heterogeneous backbone and side-chains differs from that
of other a/b peptides. These studies offer input for subsequent
design and control of the backbone folding with functional
traits of both the biomolecules: proteins and nucleic acids.
Further studies are in progress in this direction.
18 K. Gogoi and V. A. Kumar, Chem. Commun., 2008, 706.
19 (a) J. Yang and S. H. Gellman, J. Am. Chem. Soc., 1998, 120, 9090;
(b) J. Yang, L. A. Christianson and S. H. Gellman, Org. Lett.,
1999, 1, 11; (c) I. A. Motorina, C. Huel, E. Quiniou, J. Mispelter,
E. Adjadj and D. S. Grierson, J. Am. Chem. Soc., 2001, 123, 8.
20 M. J. Frisch, et al., Gaussian 03, Gaussian Inc., Wallingford, CT,
2004. For complete citation, see Supporting Information.
c
6964 Chem. Commun., 2010, 46, 6962–6964
This journal is The Royal Society of Chemistry 2010