90 h produced 24 in 46% yield as a mixture of 3 inseparable
diastereomers in a ratio of 6 : 3 : 1 (GC). Desilylation (protolysis)
did not improve the stereochemical outcome, however, treatment
of the mixture (i.e. 24) with phenylselenyl chloride afforded pure
25 as the major compound. Unfortunately, elimination using a
variety of oxidation–elimination protocols consistently gave a 1 : 3
ratio of enones 26 and 27, with the desired advanced intermediate
26 being obtained in only 13% yield (Scheme 5).
most of the functionality required for the spiro-g-lactone clerodane
ring system can be obtained via a direct Diels–Alder approach. The
likelihood of this approach being viable is, however, questionable
due to issues associated with stereocontrol most likely arising
from the methyl substituent contained with dienophile 11. Finally,
rapid access to the clerodane system remains elusive, requiring
new innovative strategies to facilitate syntheses in an acceptable
number of steps.
Acknowledgements
The authors thank the EPSRC (UK), Imperial College London,
the University of Cambridge and The University of Queensland
for financial support. Special thanks to Dr Andrew J. P. White
(Chemical Crystallography Laboratory, Department of Chem-
istry, Imperial College London, UK) for assistance with X-ray
crystal data.
References
1 (a) A. T. Merritt and S. V. Ley, Nat. Prod. Rep., 1992, 9, 243–287; (b) J.
R. Hanson, Nat. Prod. Rep., 2002, 19, 125; (c) J. R. Hanson, Nat. Prod.
Rep., 2005, 22, 594.
2 (a) T. Tokoroyama, Synthesis, 2000, 5, 611–633; (b) A. S. Sarma, J. Sci.
Ind. Res., 1987, 46, 492.
Scheme 5
3 H.-J. Liu, J.-L. Zhu, I.-C. Chen, R. Jankowska, Y. Han and K.-S. Shia,
Angew. Chem., Int. Ed., 2003, 42, 1851–1853.
4 I.-C. Chen, Y.-K. Wu, H.-J. Liu and J.-L. Zhu, Chem. Commun., 2008,
4720.
5 See for example, M. S. J. Simmons, W. M. Blaney, S. V. Ley, G. Savona,
M. Bruno and B. Rodriguez, Phytochemistry, 1989, 28, 1069.
6 (a) S. V. Ley, N. S. Simpkins and A. J. Whittle, J. Chem. Soc., Chem.
Commun., 1983, 503; (b) P. S. Jones, S. V. Ley, N. S. Simpkins and
A. J. Whittle, Tetrahedron, 1986, 42, 6519; (c) S. V. Ley, “Synthesis
of Insect Antifeedants” in Pesticide Science and Biotechnology. Ed.
R. Greenhalgh and T. R. Roberts, Blackwell Scientific Publications
(Oxford) 1987, ISBN: 0-632-01618-3, p25–34.
We believe the presence of the additional methyl group in
alkylidene lactone 11 is responsible for the loss of stereocontrol of
the Diels–Alder reaction compared to the unsubstituted alkylidene
lactone 13. In the reaction of 13 with diene 8 the initial direction
of approach will be controlled by the stereochemistry of the
furan substitution. The dienophile will then approach with the
lactone carbonyl interacting with the diene in an endo approach,
maximizing orbital overlap between the carbonyl of the lactone
and the diene. The initial approach for 11 will also be determined
by the furan orientation. However, in this case if an endo approach
is considered the additional methyl group will be brought into
close proximity to the silyl group of the diene (Fig. 3). Therefore
the favoured endo approach of the lactone will be offset by the
increased steric interaction, leading to loss of stereocontrol.
7 R. H. Pouwer, H. Schill, C. M. Williams and P. V. Bernhardt, Eur. J.
Org. Chem., 2007, 4699.
8 See for example, (a) T. Tokoroyama, R. Kanazawa, S. Yamamoto, T.
Kamikawa, H. Suenaga and M. Miyabe, Bull. Chem. Soc. Jpn., 1990,
63, 1720; (b) T. W. Ly, J.-H. Liao, K.-S. Shia and H.-J. Liu, Synthesis,
2004, 2, 271; (c) C.-H. Lai, Y. L. Shen and C.-C. Liao, Synlett, 1997,
1351; (d) T. Tokoroyama, K. Matsuo and T. Kubota, Tetrahedron, 1978,
34, 1907; (e) T. Tokoroyama, K. Matsuo, H. Kotsuki and R. Kanazawa,
Tetrahedron, 1980, 36, 3377.
9 M. E. Jung, C. N. Zimmerman, G. T. Lowen and S. I. Khan, Tetrahedron
Lett., 1993, 34, 4453. See also, (a) M. E. Jung and C. N. Zimmerman,
J. Am. Chem. Soc., 1991, 113, 7813; (b) M. E. Jung, J. Cordova and M.
Murakami, Org. Lett., 2009, 11, 3882.
10 P. Malakov, G. Papanov and N. Mollov, Tetrahedron Lett., 1978, 2025.
11 G. Savona, M. C. Garcia-Alvarez and B. Rodriguez, Phytochemistry,
1982, 21, 721.
12 Tin and indium can also be used instead of zinc, see (a) K. Uneyama,
K. Ueda and S. Torii, Chem. Lett., 1986, 1201; (b) P. K. Choudhury, F.
Foubelo and M. Yus, Tetrahedron, 1999, 55, 10779.
13 K. Yamamoto, Y. Tomo and S. Suzuki, Tetrahedron Lett., 1980, 21,
2661.
Fig. 3
14 A. Loffler, R. Pratt, J. Pucknat, G. Gelbard and A. S. Dreiding, Chimia,
1969, 23, 413.
In conclusion, this body of work advances the seminal studies of
Jung demonstrating an advanced intermediate (i.e. 26) containing
15 L. T. Burka, T. M. Harris and B. J. Wilson, J. Org. Chem., 1974, 39,
2212.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 4745–4747 | 4747
©