Journal of the American Chemical Society
COMMUNICATION
developed. This protocol offers a one-step alternative to tradi-
tional auxiliary-based methods and utilizes a readily accessible
chiral lithium amine that can be recovered with high efficiency by
a simple extraction with aqueous acid. Applications on scale and
with functionalized substrates and alkylating agents have been
demonstrated. Efficient alkylations with unreactive alkyl halides
are enabled by the high nucleophilicity of enediolates. Further
studies to probe the origin of the stereoselectivity19 and expand
the scope of the alkylation process to other types of carboxylic
acids are underway.20
(c) Hung, K.-y.; Harris, P. W. R.; Brimble, M. A. J. Org. Chem. 2010,
75, 8728–8731. (d) Sun, H.; Abbott, J. R.; Roush, W. R. Org. Lett. 2011,
13, 2734–2737. (e) Fuwa, H.; Nakajima, M.; Shi, J.; Takeda, Y.; Saito, T.;
Sasaki, M. Org. Lett. 2011, 13, 1106–1109.
(6) For structure and reactivity of enediolates, see: (a) Hauser, C. R.;
Chambers, W. J. J. Am. Chem. Soc. 1956, 78, 4942–4944. (b) Creger, P. L.
J. Am. Chem. Soc. 1967, 89, 2500–2501. (c) Pfeffer, P. E.; Silbert, L. S.;
Chirinko, J. M. J. Org. Chem. 1972, 37, 451–458. (d) Brun, E. M.; Gil, S.;
Mestres, R.; Parra, M. Tetrahedron 1998, 54, 15305–15320. (e) Wang,
D. Z.; Kim, Y.-J.; Streitwieser, A. J. Am. Chem. Soc. 2000, 122, 10754–10760.
(f) Streitwieser, A.; Husemann, M.; Kim, Y.-J. J. Org. Chem. 2003,
68, 7937–7942. For selected examples of chiral lithium amides as
stereodirecting agents, see:(g) Imai, M.; Hagihara, A.; Kawasaki, H.;
Manabe, K.; Koga, K. J. Am. Chem. Soc. 1994, 116, 8829–8830. (h) Shirai,
R.; Tanaka, M.; Koga, K. J. Am. Chem. Soc. 1986, 108, 543–545. (i)
Simpkins, N. S. Pure Appl. Chem. 1996, 68, 691–694. (j) Qin, Y.-c.; Stivala,
C. E.; Zakarian, A. Angew. Chem., Int. Ed. 2007, 46, 7466–7469. (k) Gu, Z.;
Herrmann, A. T.; Stivala, C. E.; Zakarian, A. Synlett 2010, 1717–1722. (l)
Stivala, C. E.; Zakarian, A. Org. Lett. 2009, 11, 839–842. (m) Stivala, C. E.;
Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774–3776.
(7) Ando, A.; Shioiri, T. Chem. Commun 1987, 656–658.
(8) Matsuo, J.; Koga, K. Chem. Pharm. Bull. 1997, 45, 2122–2124.
(9) For a kilogram-scale preparation of (R)-2 from styrene
oxide, see: Frizzle, M. J.; Caille, S.; Marshall, T. L.; McRae, K.; Nadeau,
K.; Guo, G.; Wu, S.; Martinelli, M. J.; Moniz, G. A. Org. Process Res. Dev.
2007, 11, 215–222.
(10) We carried out a more comprehensive survey of the bases than
that shown in Figure 1. Its detailed presentation is beyond the scope of
this communication and will be described separately.
(11) Yamashita, Y.; Odashima, K.; Koga, K. Tetrahedron Lett. 1999,
40, 2803–2806.
(12) Sommer, S.; Kuehn, M.; Waldmann, H. Adv. Synth. Catal. 2008,
350, 1736–1750.
(13) (a) Universite, L.; Attardo, G.; Tripathy, S.; Gagnon, M. Methyl
Sulfanyl Pyrimidines Useful as Antiinflammatories, Analgesics, and
Antiepileptics. WIPO Pat. Appl. WO2010/132999 A1, 2010. (b) Wagner,
S.; Breyholz, H.-J.; Law, M. P.; Faust, A.; H€oltke, C.; Schr€oer, S.; Haufe, G.;
Levkau, B.; Schober, O.; Sch€afers, M.; Kopka, K. J. Med. Chem. 2007,
50, 5752–5764.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures, characterization data, copies of 1H and 13C NMR spectra,
and HPLC traces for all compounds. This material is available
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank Amgen for the donation of more than 100 g of
amine (R)-2 that enabled the research described in this article,
and the assistance of Dr. Seb Caille (Amgen, Thousand Oaks,
CA) is especially appreciated. Financial support was provided by
the National Institutes of Health National Institute of General
Medical Sciences (R01 GM077379) and kind gifts from Amgen
and Eli Lilly, with additional support from the Tobacco-Related
Disease Research Program (predoctoral award to C.E.S.). We are
grateful to Dr. Hongjun Zhou for continued assistance with
NMR spectroscopy.
’ REFERENCES
(14) Martischonok, V.; Melikyan, G. G.; Mineif, A.; Vostrovsky, O.;
Bestmann, H. J. Synthesis 1991, 560–564.
(1) (a) Evans, D. A.; Helmchen, G.; R€uping, M. In Asymmetric
Synthesis—The Essentials; Christmann, M., Br€ase, S., Eds.; Wiley-VCH:
Weinheim, Germany, 2006; p 3. (b) Caine, D. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1991; Vol. 3, pp 1À63.
(15) (a) Ilardi, E. A.; Isaacman, M. J.; Qin, Y.-c.; Shelly, S. A.;
Zakarian, A. Tetrahedron 2009, 65, 3261–3269. (b) Taber, D. F.; Xu, M.;
Hartnett, J. C. J. Am. Chem. Soc. 2002, 124, 13121–13126.
(16) Partial decomposition of (4-bromophenyl)acetic acid was ob-
served, presumably through a competing benzyne formation.
(17) The result with 2-pyridylacetic acid can be readily understood
by considering the following resonance structures that reveal its enamide
rather than enediolate reactivity:
(2) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc.
1982, 104, 1737–1739. (b) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark,
J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215–8216.
(3) (a) Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am.
Chem. Soc. 1994, 116, 9361–9362. (b) Myers, A. G.; Yang, B. H.; Chen,
H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997,
119, 6496–6511.
(4) (a) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem.
Soc. 1976, 98, 567–576. (b) Sonnet, P.; Heath, R. R. J. Org. Chem. 1980,
45, 3137–3139. (c) Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980,
21, 4233–4266. (d) Schmierer, R.; Grotemeier, G.; Helmchen, G.;
Selim, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 207–208. (e) Kawanami,
Y.; Ito, Y.; Kitagawa, T.; Taniguchi, Y.; Katsuki, T.; Yamaguchi, M.
Tetrahedron Lett. 1984, 25, 857–860. (f) Oppolzer, W.; Moretti, R.;
Thomi, S. Tetrahedron Lett. 1989, 30, 5603–5606. (g) Abiko, A.; Moriya,
O.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1995,
34, 793–795. (h) Lin, J.; Chan, W. H.; Lee, A. W. M.; Wong, W. Y.
Tetrahedron 1999, 55, 13983–13998.
In addition, chelation between the carboxylate oxygen and pyridine
nitrogen atoms is possible, which can disrupt the putative aggregate
between the enediolate and the chiral lithium amide.
(18) Shapiro, G.; Chesworth, R. Tetrasubstituted Benzenes. WIPO
Pat. Appl. WO2009/86277 A1, 2009.
(19) We experimentally confirmed that the products are formed
through enantioselective alkylation of the initially generated enediolate.
Enolization of the product followed by a possible enantioselective
protonation has been ruled out. See the Supporting Information (file
Supporting Information 1, p S23) for details.
(5) For selected recent applications in synthesis, see: (a) Levin, S.;
Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2011, 133, 774–776.
(b) Nicolas, L.; Anderl, T.; Sasse, F.; Steinmetz, H.; Jansen, R.; H€ofle, G.;
Laschat, S.; Taylor, R. E. Angew. Chem., Int. Ed. 2011, 50, 938–941.
(20) Preliminary studies revealed that under the standard conditions
described herein, simple alkanoic acids (such as butyric acid) do not
undergo highly enantioselective alkylation.
11939
dx.doi.org/10.1021/ja205107x |J. Am. Chem. Soc. 2011, 133, 11936–11939