3940
K. Ramesh et al. / Tetrahedron Letters 52 (2011) 3937–3941
COOEt
COOEt
COOEt
OH
O
H
O
H
EtOOC
EtOOC
[B]
NH2
NH
COOEt
NH
O
[A]
-H2O
EtOOC
EtOOC
OH
COOEt
EtOOC
OH
H
N
N
N
N
[C]
Scheme 2. Plausible mechanistic pathway for the synthesis of highly substituted pyrroles using DABCO.
Table 2
In conclusion, we have developed a convenient one-pot synthe-
sis of highly substituted pyrroles catalyzed by DABCO in excellent
yields. This method involves mild reaction conditions and cleaner
reaction profiles.
Screening of DABCO-catalyzed synthesis of diethyl 4-hydroxy-1-phenyl-1H-pyrrole-
2,3-dicarboxylatea
Entry
Catalyst
Solvent
Time (h)
T (°C)
Yieldb (%)
1
2
3
4
5
6
7
—
CH3CN
CH3CN
CH3CN
Toluene
Toluene
Toluene
Ethanol
3
3
3
4
4
4
5
80
rt
50–55
100
rt
—
DABCO
DABCO
—
DABCO
DABCO
DABCO
58
91
—
45
50
48
Acknowledgements
We thank CSIR, New Delhi, India, for the fellowships to S.N.M.,
K.K. and UGC for the fellowship to K.R.
60
60
a
Supplementary data
Reaction conditions: amine (1.0 mmol), DEAD (1.0 mmol), glyoxal (1.5 mmol),
catalyst (0.7 mol %), solvent (10 mL).
b
Isolated yield.
Supplementary data associated with this article can be found, in
References and notes
ing amine, DEAD/DMAD, and glyoxal using DABCO as a catalyst
(Scheme 1).
1. (a) Hayakawa, Y.; Kawasaki, K.; Seto, H. Tetrahedron Lett. 1992, 33, 2701; (b)
Yoshida, W. Y.; Lee, K. K.; Carroll, A. R.; Scheuner, P. Helv. Chim. Acta 1992, 75,
1721; (c) Lehuedu, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.;
Vierfond, J. M. Eur. J. Med. Chem. 1999, 34, 991; (d) Dong, Y.; Naranjan, N.;
Ablaza, S. L.; Yu, S. X.; Bolvig, S.; Forsyth, D. A.; Le Quesne, P. W. J. Org. Chem.
1999, 64, 2657; (e) Arrowsmith, J.; Jennings, S. A.; Clark, A. S.; Stevens, M. F. G. J.
Med. Chem. 2002, 45, 5458; (f) Haubmann, C.; Huebner, H.; Gmeiner, P. Bioorg.
Med. Chem. Lett. 1999, 9, 3143; (g) Robertson, J.; Hatley, R. J. D.; Watkin, D. J. J.
Chem. Soc., Perkin. Trans. 1 2000, 3389; (h) Jones, A. Pyrroles; Wiley: New York,
1990.
In our initial studies towards the development of this method-
ology, aniline (1.0 mmol) was reacted with DEAD (1.0 mmol) and
glyoxal (1.5 mmol) in acetonitrile and found that no reaction oc-
curred instead, the starting materials were recovered. It was ob-
served that the same reaction proceeded efficiently when DABCO
was used as a catalyst in acetonitrile at room temperature yielding
the corresponding substituted pyrrole in 58% yield after 3 h. When
the same reaction was attempted in acetonitrile at 50–55 °C the
reaction proceeded to completion within 3 h and yielded the corre-
sponding pyrrole derivative in 91% yield.23, 24 While evaluating the
influence of different solvent systems for DABCO-catalyzed synthe-
sis of substituted pyrroles, a few solvents were screened such as
toluene, ethanol, and acetonitrile, and among them acetonitrile ap-
peared to be a better choice (Table 2).
To expand the scope of this novel methodology, several di-
versely substituted anilines having electron-donating as well as
electron-withdrawing groups were reacted with glyoxal and
DMAD/DEAD in the presence of DABCO resulting in good yields
in fast reaction times. It was observed that aromatic amines bear-
ing electron-donating groups resulted in higher yields of the prod-
ucts compared to amines with electron-withdrawing groups. The
experimental results are included in Table 1. All the products were
characterized by 1H, 13C NMR, IR, and mass spectra.
2. Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Pergamon, 1996; Vol. 2, p 119.
3. (a) Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 1635; (b) Kleinspehn, G. G. J. Am.
Chem. Soc. 1955, 77, 1546; (c) Fabiano, E.; Golding, B. T. J. Chem. Soc., Perkin
Trans. 1 1991, 3371; (d) Hamby, J. M.; Hodges, J. C. Heterocycles 1993, 35, 843;
(e) Alberola, A.; Ortega, A. G.; Sadaba, M. L.; Sanudo, C. Tetrahedron 1999, 55,
6555; (f) Elghamry, I. Synth. Commun. 2002, 32, 897.
4. (a) Knorr, L. Ber. 1884, 17, 2863; (b) Paal, C. Ber. 1884, 17, 2756; (c) Hori, I.;
Igarashi, M. Bull. Chem. Soc. Jpn. 1971, 44, 2856; (d) Braun, R. U.; Zeitler, K.;
Mueller, T. J. J. Org. Lett. 2001, 3, 3297.
5. Tracey, M. R.; Hsung, R. P.; Lambeth, R. H. Synthesis 2004, 918.
6. Banik, B. K.; Banik, I.; Renteria, M.; Dasgupta, S. K. Tetrahedron Lett. 2005, 46,
2643.
7. Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W. Tetrahedron Lett. 2006, 47,
5383.
8. Arumugam, P.; Perumal, P. T. Chem. Lett. 2006, 35, 632.
9. Curini, M.; Montanari, F.; Rosati, O.; Lioy, E.; Margarita, R. Tetrahedron Lett.
2003, 44, 3923.
10. Samajdar, S.; Becker, F. F.; Banik, B. K. Heterocycles 2001, 55, 1019.
11. Texier-Boullet, F.; Klein, B.; Hamelin, J. Synthesis 1986, 409.
12. Wang, B.; Kang, Y. R.; Yang, T.; Yang, L. M. Synth. Commun. 2005, 35, 1051.
13. (a) Yadav, J. S.; Reddy, B. V. S.; Eeshwaraiah, B.; Gupta, M. K. Tetrahedron Lett.
2004, 45, 5873; (b) Wang, B.; Gu, Y. L.; Luo, C.; Yang, T.; Yang, L. M.; Suo, J. S.
Tetrahedron Lett. 2004, 45, 3417.
14. (a) Werner, S.; Iyer, P. S. Synlett 2005, 1405; (b) Minetto, G.; Raveglia, L. F.; Sega,
A.; Taddei, M. Eur. J. Org. Chem. 2005, 70, 5277; (c) Danks, T. N. Tetrahedron Lett.
1999, 40, 3957; (d) Minetto, G.; Raveglia, L. F.; Taddei, M. Org. Lett. 2004, 6, 389;
(e) Abid, M.; Landge, S. M.; Torok, B. Org. Prep. Proced. Int. 2006, 38, 495; (f) Rao,
H. S. P.; Jothilingam, S. Tetrahedron Lett. 2001, 42, 6595.
The plausible mechanism for the synthesis of highly substituted
pyrroles in the presence of DABCO involves the nucleophilic addi-
tion of amine with DEAD leading to the formation of intermediate
[A], this enamine part on reaction with glyoxal gives another inter-
mediate [B], which undergoes condensation process followed by
proton abstraction by DABCO leading to the desired product [C]
(Scheme 2).