Journal of the American Chemical Society
COMMUNICATION
Scheme 4
(2) (a) Henkel, T.; Rohr, J.; Beale, J. M.; Schwene, L. J. Antibiot.
1990, 43, 492. (b) Weber, S.; Zolke, C.; Rohr, J.; Beale, J. M. J. Org.
Chem. 1994, 59, 4211. (c) Zhu, L.; Ostash, B.; Rix, U.; Nur-e-Alam, M.;
Mayers, A.; Luzhetskyy, A.; Mendez, C.; Salas, J. A.; Bechthold, A.;
Fedorenko, V.; Rohr, J. J. Org. Chem. 2005, 70, 631.
(3) (a) Depenbrock, H.; Bornschlegl, S.; Peter, R.; Rohr, J.; Schmid,
P.; Schweighart, P.; Block, T.; Rastetter, J.; Kanauske, A. R. Ann.
Hematol. 1996, 73, A80/316. (b) Crow, R. T.; Rosenbaum, B.; Smith,
R., III; Guo, Y.; Ramos, K. S.; Sulikowski, G. A. Bioorg. Med. Chem. Lett.
1999, 9, 1663. (c) Korynevska, A.; Heffeter, P.; Matselyukh, B.; Elbling,
L.; Micksche, M.; Stoika, R.; Berger, W. Biochem. Pharmacol. 2007,
74, 1713. (d) Shaaban, K. A.; Srinivasan, S.; Kumar, R.; Damodaran, C.;
Rohr, J. J. Nat. Prod. 2011, 74, 2.
(4) (a) Ostash, B.; Rix, U.; Rix, L. L. R.; Liu, T.; Lombo, F.;
Luzhetskyy, A.; Gromyko, O.; Wang, C.; Bra~na, A. F.; Mꢀendez, C.;
Salas, J. A.; Fedorenko, V.; Rohr, J. Chem. Biol. 2004, 11, 547.
(b) Luzhetskyy, A.; Zhu, L.; Gibson, M.; Fedoryshyn, M.; D€urr, C.;
Hofmann, C.; Hoffmeister, D.; Ostash, B.; Mattingly, C.; Adams, V.;
Fedorenko, V.; Rohr, J.; Bechthold, A. ChemBioChem 2005, 6, 675.
(c) Zhu, L.; Luzhetskyy, A.; Luzhetska, M.; Mattingly, C.; Adams, V.;
Bechthold, A.; Rohr, J. ChemBioChem 2007, 8, 83.
good 78% yield (Scheme 4). Stronger conditions (e.g., a bit more
TBSOTf or higher temperature) led to cleavage of the 2,3,6-
trideoxy-R-glycosidic linkages and the C8ꢀO-20-deoxy-β-glyco-
sidic linkage. Removal of the bromide and iodide and the benzylic
protecting groups on the fragile landomycin A precursor 28
proved to be a big challenge. We first screened conditions on a
landomycinone disaccharide15 and then applied the optimized
conditions to hexasaccharide 28. Thus, hydrogenation (10 atm)
of 28 with Raney Ni followed by oxidation of the resulting
hydroquinone with DDQ afforded the desired deoxyhexasac-
charide 29 in 44% yield, with the bromide, three iodide, and three
benzylic groups being cleaved. Finally, the five acetyl groups
remaining on the sugar residue were removed with NaOMe,
providing landomycin A (1) in 67% yield. The analytical data of 1
were in good agreement with those reported for the natural
product.2a,c,8
In conclusion, the first total synthesis of landomycin A (1), the
longest and most potent antiumor congener of the angucycline
antibiotics, has been achieved in 63 steps and 0.34% overall yield
starting from 2,5-dihydroxybenzoic acid, 3,5-dimethylphenol,
triacetyl D-glucal, and D-xylose, with a convergent linear sequence
of 21 steps. The synthesis of other landomycin members and
their derivatives has become a feasible task that would facilitate
in-depth studies of their unusual spectrum of antitumor activities.
(5) Roush, W. R.; Neitz, R. J. J. Org. Chem. 2004, 69, 4906. In this
paper, Roush and Neitz described the synthesis of the structure originally
assigned to the aglycone of landomycin A (i.e., landomycinone) and
confirmed the structure of the synthetic sample by X-ray analysis. However,
comparison of spectroscopic data for synthetic landomycinone with
published data for the natural aglycone as well as with copies of 1H NMR
spectra provided by Prof. Rohr to Prof. Roush led these authors to conclude
that their synthetic material was not identical to naturally occurring land-
omycinone. However, a paper subsequently appeared from Rohr’s labora-
tory that provided a new set of 1H NMR data for natural landomycinone
that exactly matched the data obtained by Roush and Neitz for their
synthetic landomycinone (ref 2c). The latter information, together with our
successful total synthesis of landomycinone A described here, leaves no
doubt that Roush and Neitz indeed synthesized landomycinone.
(6) (a) Guo, Y.; Sulikowski, G. A. J. Am. Chem. Soc. 1998, 120, 1392.
(b) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 2000, 122, 6124.
(c) Yu, B.; Wang, P. Org. Lett. 2002, 4, 1919. (d) Tanaka, H.; Yamaguchi,
S.; Yoshizawa, A.; Takagi, M.; Shin-ya, K.; Takahashi, T. Chem.—Asian J.
2010, 5, 1407. (e) Kirschning, A. Eur. J. Org. Chem. 1998, 2267. (f) Zhou,
M.; O’Doherty, G. A. Org. Lett. 2008, 10, 2283. (g) McDonald, F. E.;
Reddy, K. S. J. Organomet. Chem. 2001, 617ꢀ618, 444.
(7) Mal, D.; Pahari, P. Chem. Rev. 2007, 107, 1892.
(8) See the Supporting Information for details.
(9) Couladouros, E. A.; Strongilos, A. T.; Papageorgiou, V. P.; Plyta,
Z. F. Chem.—Eur. J. 2002, 8, 1795.
(10) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987,
109, 5551.
(11) (a) Roush, W. R.; Gung, B. W.; Bennett, C. E. Org. Lett. 1999,
1, 891. (b) Durham, T. B.; Roush, W. R. Org. Lett. 2003, 5, 1875.
(12) Roush, W. R.; Lin, X. F. J. Am. Chem. Soc. 1995, 117, 2236.
(13) Yu, B.; Yang, Z. Org. Lett. 2001, 3, 377.
(14) Lam, S. N.; Gervay-Hague, J. Org. Lett. 2003, 5, 4219.
(15) We had examined the glycosylation of landomycinone mono-
glycoside 14 with a relevant monosaccharide donor and found 3,4-di-O-
acetyl-2,6-dideoxy-2-iodo-D-glucopyranosyl trifluoroacetimidate to be
superior to afford the corresponding β-disaccharide in good yield (data
not shown).
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, charac-
b
terization data, and NMR spectra for new compounds. This
acs.org.
’ AUTHOR INFORMATION
Corresponding Author
(16) (a) Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405. (b) Yu, B.;
Sun, J. Chem. Commun. 2010, 46, 4668.
’ ACKNOWLEDGMENT
This work was supported by the NSFC (20932009 and
20921091) and the MOST of China (2010CB529706).
’ REFERENCES
(1) (a) Rohr, J.; Thiericke, R. Nat. Prod. Rep 1992, 9, 103. (b) Krohn,
K.; Rohr, J. Top. Curr. Chem. 1997, 188, 127.
12435
dx.doi.org/10.1021/ja205339p |J. Am. Chem. Soc. 2011, 133, 12433–12435