Table 1. Direct Catalytic Asymmetric Conjugate Addition of
TMS Acetylene 3aa
The first generation synthetic route to 1 developed by
Amgen relied on optical resolution to provide enantiopure
samples for toxicologic and clinical studies. Subsquently,
Cui and Walker at Amgen established a reliable and scal-
able enantioselective synthesis of 1 through asymmetric
conjugate addition of an alkynyl Grignard reagent to
Meldrum’s acid-derived acceptors.6 Although this second
generation route advanced the synthetic efficiency, the
use of more than stoichiometric amounts of cinchonidine,
Me2Zn, and propynylmagnesium chloride is essential to
construct the requisite stereogenic center with high yield
and excellent enantioselectivity, and there remains room
for further improvement.
Catalytic asymmetric conjugate addition of terminal
alkynes to R,β-unsaturated carboxylates offers the most
straightforward and efficient access to the optically active
β-alkynyl acid derivatives,7 but few methods exist for this
transformation in a catalytic asymmetric manner, likely
due to the diminished reactivity of in situ generated transi-
tion metal alkynylides. Recently, to address this issue, our
group focused on the simultaneous activation of both a
terminal alkyne and an acceptor to compensate for the low
reactivity of the transition metal alkynylide. R,β-Unsatu-
rated thioamides8,9 were selected as suitable acceptors to
engage the enantioselective coupling with terminal alkynes,
in which the Lewis basic nature of both the alkyne and
thioamide functional groups was exploited for simulta-
neous activation by a soft Lewis acid/hard Brønsted base
a 2a, 0.2 mmol. b Determined by 1H NMR of the crude mixture with
2-methoxynaphthalene as an internal standard. c 10 mol % of phosphine
oxide 6 was used. d Isolated yield.
cooperative catalyst. Based on this strategy, we developed
a direct catalytic asymmetric conjugate addition of termi-
nal alkynes to R,β-unsaturated thioamides that proceeds
under proton transfer conditions.10 Herein we report a
concise enantioselective synthesis of AMG 837 (1) via soft
Lewis acid/hard Brønsted base catalyzed11 asymmetric
conjugate addition of a terminal alkyne to R,β-unsaturated
thioamide.
(6) (a) Cui, S.; Walker, S. D.; Woo, J. C. S.; Borths, C. J.; Mukherjee,
H.; Chen, M. J.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 436. (b) Woo,
J. C. S.; Cui, S.; Walker, S. D.; Faul, M. M. Tetrahedron 2010, 66, 4730.
(c) Morrison, H.; Jona, J.; Walker, S. D.; Woo, J. C. S.; Li, L.; Fang, J.
Org. Process Res. Dev. 2011, 15, 104 and references cited therein.
(7) For copper catalyzed asymmetric conjugate additions of terminal
€
alkynes, see: (a) Knopfel, T. F.; Carreira, E. M. J. Am. Chem. Soc. 2003,
€
125, 6054. (b) Knopfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M.
J. Am. Chem. Soc. 2005, 127, 9682. (c) Fujimori, S.; Carreira, E. M.
Angew. Chem., Int. Ed. 2007, 46, 4964. For rhodium catalyzed asym-
metric conjugate additions of terminal alkynes, see: (d) Nishimura, T.;
Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am. Chem. Soc.
2008, 130, 1576. (e) Nishimura, T.; Tokuji, S.; Sawano, T.; Hayashi, T.
Org. Lett. 2009, 11, 3222. (f) Nishimura, T.; Sawano, T.; Hayashi, T.
Angew. Chem., Int. Ed. 2009, 48, 8057. (g) Fillion, E.; Zorzitto, A. K.
J. Am. Chem. Soc. 2009, 131, 14608. (h) Nishimura, T.; Sawano, T.;
Tokuji, S.; Hayashi, T. Chem. Commun. 2010, 46, 6837. For the catalytic
asymmetric conjugate addition of preactivated terminal alkynes, see: (i)
Kwak, Y.-S.; Corey, E. J. Org. Lett. 2004, 6, 3385. (j) Wu, T. R.; Chong,
J. M.; Corey, E. J. Org. Lett. 2010, 12, 300.
(8) For R,β-unsaturated thioamides as electrophile, see: Alkyllithium
or magnesium: (a) Tamaru, Y.; Harada, T.; Iwamoto, H.; Yoshida, Z.
J. Am. Chem. Soc. 1978, 100, 5221. (b) Tamaru, Y.; Kagotani, M.;
Yoshida, Z. Tetrahedron Lett. 1981, 22, 3409. (c) Tamaru, Y.; Harada,
T.; Nishi, S.; Yoshida, Z. Tetrahedron Lett. 1982, 23, 2383. Lithium
enolates: (d) Tamaru, Y.; Harada, T.; Yoshida, Z. J. Am. Chem. Soc.
Figure 1. Proposed catalytic cycle with Mtl-HMDS.
We began our studies using silyl acetylene as an acetylene
equivalent in the direct catalytic asymmetric conjugate
(10) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010,
132, 10275.
€
(11) (a) Kruger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837.
(b) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757.
(c) Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 14556.
For CuOtBu-catalyzed 1,2-addition of terminal alkynes, see: (d) Motoki,
R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997. (e) Asano, Y.;
Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2007, 9, 3901.
ꢀ
1979, 101, 1316. Nitroalkanes: (e) Sosnicki, J. G. Tetrahedron 2009, 65,
1336.
ꢀ
(9) For utility of thioamide functional group, see: Jagodzinski, T. S.
Chem. Rev. 2003, 103, 197.
Org. Lett., Vol. 13, No. 5, 2011
953