5634
V. Theodorou et al. / Tetrahedron 67 (2011) 5630e5634
2.25 (m, 2H, CH2), 5.98 (d, 1H, J¼15.25 Hz, CH]), 6.63 (s, 1H, NH),
6.89 (dt, 1H, J¼15.25, 7.25 Hz, CH]), 7.20e7.42 (m, 15H, ArH).
J¼7.25 Hz, CH2 for (Z) w50%), 5.40e5.75 (m, 2H, CH]CH), 5.82 and
6.34 (two br s, 2H, NH2); IR (KBr) 3360, 3195, 2938, 2927, 2850,
1653 cmꢂ1
.
4.3.3. N-Trityl-2-octenamide (E). A white solid, mp 203e205 ꢀC;
1H NMR:
d
0.91 (t, 3H, J¼7.00 Hz, CH3), 1.20e1.45 (m, 6H,
4.5.5. 3-Nonenamide. A white solid; [Found: C, 69.89; H, 10.83; N,
9.24. C9H17NO requires C, 69.63; H, 11.04; N, 9.02%]; 1H NMR:
0.86
(CH2)3), 2.18 (m, 2H, CH2), 5.77 (d, 1H, J¼15.50 Hz, CH]), 6.68
(s, 1H, NH), 6.90 (dt, 1H, J¼15.50, 7.00 Hz, CH]), 7.08e7.40
(m, 15H, ArH).
d
(t, 3H, J¼7.5 Hz, CH3), 1.15e1.40 (m, 6H, (CH2)3), 2.02 (m, 2H, CH2),
2.93 and 3.00 (two d, 2H, J¼6.50 Hz, CH2 for (E) w44% and
J¼7.25 Hz, CH2 for (Z) w56%), 5.45e5.70 (m, 2H, CH]CH),
5.70e6.10 (br d, 2H, NH2); IR (KBr) 3364, 3185, 2958, 2924, 2856,
4.4. Typical procedure for the preparation of N-tritylamides
from
a
,b-unsaturated acids with PyBroP as coupling reagent
1651, 969 cmꢂ1
.
To a solution of the carboxylic acid (1 mmol) in dry DCM
(3 mL), TrNH2 (1 mmol), PyBroP (1 mmol) and Et3N (3 mmol) in
DCM (2 mL) were added and the mixture was allowed to stir at
4.5.6. 3-Decenamide. A white solid; [Found: C, 70.69; H, 11.48; N,
8.51. C10H19NO requires C, 70.96; H, 11.31; N, 8.28%]; 1H NMR:
0.82
d
(t, 3H, J¼7.5 Hz, CH3), 1.12e1.36 (m, 8H, (CH2)4), 2.00 (m, 2H, CH2),
2.88 and 2.95 (two d, 2H, J¼6.50 Hz, CH2 for (E) w46% and
J¼7.25 Hz, CH2 for (Z) w54%), 5.40e5.70 (m, 2H, CH]CH), 5.90 and
6.50 (two br s, 2H, NH2); IR (KBr) 3354, 3186, 2926, 2856, 1667,
0
ꢀC for 5 min and at rt overnight, until completion of the re-
action. The mixture was then diluted with AcOEt (25 mL),
washed with water, 5% KHSO4, dried over anhydrous Na2SO4,
concentrated in vacuo and purified by column chromatography
on silica gel. The obtained N-tritylamides were mixtures of
969 cmꢂ1
.
a,b- and b,g
-unsaturated compounds, as identified by 1H NMR
Acknowledgements
spectroscopy.
We are grateful to Dr. Nikitas Ragoussis, VIORYL S.A. (Greece) for
providing us with samples of 2-alkenoic acids. We thank the NMR
center of the University of Ioannina for having obtained the 1H NMR
spectra.
4.5. Typical procedure for the detritylation of the N-trityl-3-
alkenamides
To a solution of the tritylamide (1 mmol) in DCM (2 mL), TFA
(6 mL) was added and the reaction mixture was allowed to stand at
rt for 0.5e3 h, until completion of the reaction. Triisopropylsilane
(w3 mmol) was added and the produced bright yellow colour of
the solution was disappeared in a few minutes. After 30 min the
colourless solution was diluted with CCl4 and evaporated to dry-
ness. The residue was redissolved in diethyl ether (2 mL) and
hexane was added for the precipitation of the deprotected amide as
white amorphous solid. The resulting triphenylmethane remains
soluble in hexane. If necessary, the amide was purified by column
chromatography on silica gel (methanol/dichloromethane, 1:20 to
1:4). The obtained 3-alkenamides were, as expected, mixtures of E
and Z isomers, except of 3-butenamide, and the yield was ꢁ85%.
References and notes
1. (a) Theodorou, V.; Ragoussis, V.; Strongilos, A.; Zelepos, E.; Eleftheriou, A.;
Dimitriou, M. Tetrahedron Lett. 2005, 46, 1357; (b) Theodorou, V.; Skobridis, K.
Tetrahedron Lett. 2005, 46, 5021; (c) Theodorou, V.; Skobridis, K.; Karkatsoulis,
A. Tetrahedron 2007, 63, 4284; (d) Theodorou, V.; Karkatsoulis, A.; Kinigopou-
lou, M.; Ragoussis, V.; Skobridis, K. Arkivoc 2009, xi, 277.
2. (a) Valcavi, U.; Caponi, R.; Martelli, P.; Minoja, F. Eur. J. Drug Metab. Pharma-
cokinet. 1979, 4, 231; (b) Ojima, I.; Korda, A. Tetrahedron Lett. 1989, 30, 6283; (c)
Marson, C.; Fallah, A. Tetrahedron Lett. 1994, 35, 293; (d) Tang, Y.; Li, C. Tetra-
hedron Lett. 2006, 47, 3823; (e) Marson, C.; Grabowska, U.; Walsgrove, T.;
Eggleston, D.; Baures, P. J. Org. Chem. 1991, 56, 2603; (f) Marson, C.; Grabowska,
U.; Walsgrove, T. J. Org. Chem. 1992, 57, 5045; (g) Marson, C.; Grabowska, U.;
Walsgrove, T.; Eggleston, D.; Baures, P. J. Org. Chem. 1994, 59, 284; (h) Marson,
C.; Grabowska, U.; Fallah, A.; Walsgrove, T.; Eggleston, D.; Baures, P. J. Org. Chem.
1994, 59, 291.
3. (a) Ragazzini, M.; Vandi, A.; Campadelli, F. Eur. Polym. J. 1970, 6, 1331; (b) Cacchi,
S.; Misiti, D.; La Torre, F. Synthesis 1980, 243; (c) Knapp, S.; Levorse, A. J. Org.
Chem. 1988, 53, 4006; (d) Bajrachara, G. B.; Koranne, P. S.; Nadaf, R. N.; Gabr, R.
K. M.; Takenaka, K.; Takizawa, S.; Sasai, H. Chem. Commun. 2010, 9064.
4. (a) Ragoussis, N. Tetrahedron Lett. 1987, 28, 93; (b) Ragoussis, N.; Ragoussis, V. J.
Chem. Soc., Perkin Trans. 1 1998, 3529.
5. Imada, Y.; Shibata, O.; Murahashi, S. I. J. Organomet. Chem. 1993, 451, 183.
6. Buchi, G.; Cushman, M.; Wuest, H. J. Am. Chem. Soc. 1974, 96, 5563.
7. (a) Janecki, T.; Bodalski, R. Tetrahedron Lett. 1991, 32, 6231; (b) Janecki, T.;
Bodalski, R.; Wieczorek, M.; Buzacz, G. Tetrahedron 1995, 51, 1721.
8. (a) Murahashi, S. I.; Imada, Y.; Nishimura, K. J. Chem. Soc., Chem. Commun. 1988,
1578; (b) Larock, R.; Ding, S. Tetrahedron Lett. 1989, 30, 1897; (c) Larock, R.; Ding,
S. Tetrahedron Lett. 1993, 34, 979; (d) Larock, R.; Ding, S. J. Org. Chem. 1993, 58,
2081; (e) Loh, T. P.; Cao, G. Q.; Yin, Z. Tetrahedron Lett. 1999, 40, 2649; (f) Luo, F.
T.; Lu, T. Y.; Xue, C. Tetrahedron Lett. 2003, 44, 7249.
9. (a) Majewski, M.; Mpango, G. B.; Thomas, M. T.; Wu, A.; Snieckus, V. J. Org. Chem.
1981, 46, 2029; (b) Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. Tetrahedron 1987, 43,
743; (c) Aurell, M.; Domingo, L.; Mestres, R.; Munoz, E.; Zaragoza, R. Tetrahedron
1999, 55, 815; (d) Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Tolo-
melli, A. Tetrahedron: Asymmetry 2004, 15, 593; (e) Guha, S.; Shibayama, A.; Abe,
D.; Sakaguchi, M.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2004, 77, 2147; (f)
Green, J.; Majewski, M.; Snieckus, V. Can. J. Chem. 2006, 84, 1397.
10. Cardillo, G.; De Simone, A.; Mingardi, A.; Tomasini, C. Synlett 1995, 1131.
11. (a) Luknitskii, F.; Vovsi, B. Russ. Chem. Rev. 1969, 38, 487; (b) Lynch, J.; Riseman,
S.; Laswell, W.; Tschaen, D.; Volante, R.; Smith, G.; Shinkai, I. J. Org. Chem. 1989,
54, 3792.
12. Murphy, J.; Hadden, M.; Stevenson, P. Tetrahedron 1997, 53, 11827.
13. (a) Artuso, F.; Sindona, G.; Athanassopoulos, C.; Stavropoulos, G.; Papaioannou,
D. Tetrahedron Lett. 1995, 36, 9309; (b) Montalbetti, C.; Falque, V. Tetrahedron
2005, 61, 10827.
14. (a) Geog, G.; Durst, T. J. Org. Chem. 1983, 48, 2092; (b) Oates, L.; Jacson, R.; Block,
M. Org. Biomol. Chem. 2003, 1, 140; (c) Concellon, J. M.; Rodriguez-Solla, H.;
Concellon, C.; Simal, C.; Alvaredo, N. J. Org. Chem. 2010, 75, 3451.
15. Goldschmith, S.; Dachs, K. Chem. Ber. 1955, 88, 583.
4.5.1. 3-Butenamide. A white solid, mp 71e72 ꢀC (lit.3a 74e75 ꢀC;
lit.15 72 ꢀC); [Found: C, 56.70; H, 8.13; N, 16.52. C4H7NO requires C,
56.45; H, 8.29; N, 16.46%]; 1H NMR:
d
2.98 (d, 2H, J¼7.20 Hz, CH2),
5.40e5.75 (m, 2H, ]CH2), 6.00 (br m, 2H: 1H, ]CH and 1H, NH,
NH2); 6.20 (br s, 1H, NH, NH2); IR (KBr): 3353, 3186, 2815, 1671,
962 cmꢂ1
.
4.5.2. 3-Hexenamide. A white solid; [Found: C, 63.81; H, 9.73; N,
12.51. C6H11NO requires C, 63.68; H, 9.80; N, 12.38%]; 1H NMR:
d
0.95 (two overlapping t, 3H, CH3), 2.03 (m, 2H, CH2), 2.90 and
2.95 (two d, 2H, J¼6.25 Hz, CH2 for (E) w35% and J¼7.00 Hz,
CH2 for (Z) w65%), 5.40e5.75 (m, 2H, CH]CH), 5.82 and 6.35
(two br s, 2H, NH2); IR (KBr) 3354, 3191, 2964, 2870, 1667,
969 cmꢂ1
.
4.5.3. 3-Heptenamide. A white solid; [Found: C, 66.01; H, 10.43; N,
11.24. C7H13NO requires C, 66.10; H, 10.30; N, 11.01%]; 1H NMR:
d
0.89 (m, 3H, CH3), 1.27e1.54 (m, 2H, CH2), 2.02 (m, 2H, CH2), 2.93
and 3.01 (two d, 2H, J¼6.00 Hz, CH2 for (E) w40% and J¼6.75 Hz,
CH2 for (Z) w60%), 5.40e5.90 (br m, 4H: 2H, CH]CH and 2H, NH2);
IR (KBr) 3353, 3200, 2961, 2872, 1665, 970 cmꢂ1
.
4.5.4. 3-Octenamide. A white solid; [Found: C, 67.91; H, 10.93; N,
10.14. C8H15NO requires C, 68.04; H, 10.71; N, 9.92%]; 1H NMR:
d
0.84 (m, 3H, CH3), 1.20e1.40 (m, 4H, (CH2)2), 2.01 (m, 2H, CH2),
2.92 and 3.00 (two d, 2H, J¼6.25 Hz, CH2 for (E) w50% and