Crystal Growth & Design
ARTICLE
4.137 Å (Figure 4a). Evidently, in cocrystal INNO, the mono-
Foundation of Henan Province (Grant 082300420040) for
financial support. This project was also partly supported by the
Scientific Research Foundation for the Returned Overseas
Chinese Scholars, Ministry of Education of China (Grant
20091341), and the Natural Science Foundation of Henan
Educational Committee (Grant 2010A150017).
coordinate CꢀI N halogen bond is preferred over the asym-
3 3 3
metric bifurcated CꢀI NN halogen bond. This is slightly
3 3 3
different from our theoretical prediction that indicates that the
asymmetric bifurcated CꢀI NN halogen bond should be
3 3 3
formed. Inspection of the crystal structure of INNO reveals it
is the greater steric hindrance at the N2 atom that prevents the
formation of the other weaker CꢀI N2 halogen bond.
3 3 3
Crystallization of F4DIB with PDONE and TMBPM in a
chloroform solvent yielded cocrystals INNOO and INNNN,
respectively. Cocrystal INNOO has the symmetry of mono-
clinic space group P21/m, and cocrystal INNNN has the
symmetry of monoclinic space group C2/m. It can be clearly
seen in panels b and c of Figure 4 that the symmetric bifurcated
’ REFERENCES
(1) (a) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc.
Chem. Res. 2005, 38, 386–395. (b) Metrangolo, P.; Meyer, F.; Pilati, T.;
Resnati, G.; Terraneo, G. Angew. Chem., Int. Ed. 2008, 47, 6114–6127.
(c) Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.;
Terraneo, G. Chem. Soc. Rev. 2010, 39, 3772–3783. (d) Bertani, R.;
Sgarbossa, P.; Venzo, A.; Lelj, F.; Amati, M.; Resnati, G.; Pilati, T.;
Metrangolo, P.; Terraneo, G. Coord. Chem. Rev. 2010, 254, 677–695.
(2) (a) Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 16789–16794. (b) Voth, A. R.; Hays, F. A.;
Ho, P. S. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6188–6193. (c) Voth,
A. R.; Khuu, P.; Oishi, K.; Ho, P. S. Nat. Chem. 2009, 1, 74–79.
(3) (a) Legon, A. C. Chem.—Eur. J. 1998, 4, 1890–1897. (b) Legon,
A. C. Phys. Chem. Chem. Phys. 2010, 12, 7736–7747.
CꢀI
NN and CꢀI
OO halogen bonds are formed in the
3 3 3
3 3 3
crystal structures of INNOO and INNNN, in good agreement
with our theoretical predictions. The crystal structures of IN-
NOO and INNNN are very similar to that of INNO. First, the 1D
chains are formed by the symmetric bifurcated CꢀI NN
3 3 3
and CꢀI OO halogen bonds. Then, the 1D chains pack on
3 3 3
each other via π π stacking interactions, generating a 2D layer
structure. The calculated π π binding energy of the parallel-
displaced PDONE dimer in the crystal structure of INNOO is
3 3 3
(4) Lommerse, J. P. M.; Stone, A. J.; Taylor, R.; Allen, F. H. J. Am.
Chem. Soc. 1996, 118, 3108–3116.
(5) Saha, B. K.; Nangia, A.; Jaskꢀolski, M. CrystEngComm 2005,
7, 355–358.
3 3 3
∼5.35 kcal/mol, and the calculated π π binding energy of the
3 3 3
parallel-displaced TMBPM dimer in the crystal structure of
(6) (a) Karpfen, A. J. Phys. Chem. A 2000, 104, 6871–6879. (b)
Karpfen, A. Struct. Bonding (Berlin, Ger.) 2008, 126, 1–15.
(7) (a) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol.
Model. 2007, 13, 291–296. (b) Politzer, P.; Lane, P.; Concha, M. C.; Ma,
Y.; Murray, J. S. J. Mol. Model. 2007, 13, 305–311. (c) G€obel1, M.;
Tchitchanov, B. H.; Murray, J. S.; Politzer, P.; Klap€otke1, T. M. Nat.
Chem. 2009, 1, 229–235. (d) Politzer, P.; Murray, J. S.; Clark, T. Phys.
Chem. Chem. Phys. 2010, 12, 7748–7757.
(8) (a) Rissanen, K. CrystEngComm 2008, 10, 1107–1113. (b)
Raatikainen, K.; Rissanen, K. Cryst. Growth Des. 2010, 10, 3638–3646.
(9) (a) Zou, J. W.; Jiang, Y. J.; Guo, M.; Hu, G. X.; Zhang, B.; Liu,
H. C.; Yu, Q. S. Chem.—Eur. J. 2005, 11, 740–751. (b) Lu, Y. X.; Zou,
J. W.; Wang, Y. H.; Yu, Q. S. THEOCHEM 2006, 767, 139–142.
(10) (a) Lu, Y. X.; Shi, T.; Wang, Y.; Yang, H. Y.; Yan, X. H.; Luo,
X. M.; Jiang, H. L.; Zhu, W. L. J. Med. Chem. 2009, 52, 2854–2862. (b)
Lu, Y. X.; Wang, Y.; Zhu, W. L. Phys. Chem. Chem. Phys. 2010,
12, 4543–4551.
INNNN is ∼7.70 kcal/mol. Finally, the 2D layer structures further
assemble into 3D networks via the CꢀH F interactions.
3 3 3
’ CONCLUSION
The CSD searches show that the number of crystal structures
that contain the symmetrical bifurcated halogen bond is very
small. To extend the application of the symmetrical bifurcated
halogen bond in crystal engineering, we successfully designed
and synthesized two cocrystals formed mainly by the symme-
trical bifurcated halogen bonds in this study. One cocrystal is
composed of F4DIB and PDONE and the other of F4DIB and
TMBPM. Both the experimental results and the theoretical
analyses showed that the symmetrical bifurcated halogen bond
may be stronger than the asymmetrical bifurcated halogen bond
and even the monocoordinate halogen bond. This means that the
symmetrical bifurcated halogen bond can also be an excellent
supramolecular synthon in crystal engineering. Symmetry is
beauty. We hope more applications of the symmetrical bifurcated
halogen bond will be revealed in the near future.
(11) Li, Q. Z.; Lin, Q. Q.; Li, W. Z.; Cheng, J. B.; Gong, B. A.; Sun,
J. Z. ChemPhysChem 2008, 9, 2265–2269.
(12) (a) Riley, K. E.; Merz, K. M. J. Phys. Chem. A 2007,
111, 1688–1694. (b) Riley, K. E.; Murray, J. S.; Politzer, P.; Concha,
M. C.; Hobza, P. J. Chem. Theory Comput. 2009, 5, 155–163. (c) Riley,
ꢁ
K. E.; Murray, J. S.; Fanfrlík, J.;Rezꢀaꢁc, J.; Solꢀa, R. J.; Concha, M. C.; Ramos,
F. M.; Politzer, P. J. Mol. Model 2011DOI 10.1007/s00894-011-1015-6.
(13) (a) Wang, W.; Wong, N.-B.; Zheng, W.; Tian, A. J. Phys. Chem.
A 2004, 108, 1799–1805. (b) Wang, W.; Tian, A.; Wong, N.-B. J. Phys.
Chem. A 2005, 109, 8035–8040. (c) Wang, W.; Hobza, P. J. Phys. Chem.
A 2008, 112, 4114–4119. (d) Wang, W.; Zhang, Y.; Ji, B. J. Phys. Chem. A
2010, 114, 7257–7260. (e) Wang, W.; Wang, D.; Zhang, Y.; Ji, B.; Tian,
A. J. Chem. Phys. 2011, 134, 054317. (f) Wang, W.; Zhang, Y.; Ji, B.; Tian,
A. J. Chem. Phys. 2011, 134, 224303.
’ ASSOCIATED CONTENT
S
Supporting Information. Cartesian coordinates of all the
b
halogen-bonded complexes in Table 1, synthesis of 4,40,6,60-
tetramethyl-2,20-bipyrimidine, and CIF files for INNO, INNOO,
and INNNN. This material is available free of charge via the
(14) (a) Pedireddi, V. R.; Sarma, J. A. R. P.; Desiraju, G. R. J. Chem.
Soc., Perkin Trans. 2 1992, 311–320. (b) Allen, F. H.; Goud, B. S.; Hoy,
V. J.; Howard, J. A. K.; Desiraju, G. R. Chem. Commun. 1994,
23, 2729–2730. (c) Desiraju, G. R. Angew. Chem., Int. Ed. 1995,
34, 2311–2327. (d) Thalladi, V. R.; Goud, B. S.; Hoy, V. J.; Allen,
F. H.; Howard, J. A. K.; Desiraju, G. R. Chem. Commun. 1996,
3, 401–402. (e) Allen, F. H.; Lommerse, J. P. M.; Hoy, V. J.; Howard,
J. A. K.; Desiraju, G. R. Acta Crystallogr. 1997, B53, 1006–1016.
(15) George, S.; Nangia, A.; Lam, C.-K.; Mak, T. C. W.; Nicoud, J.-F.
Chem. Commun. 2004, 10, 1202–1203.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: lyhxxjbm@126.com.
’ ACKNOWLEDGMENT
We are grateful to the Natural Science Foundation of China
(Grants 20872057 and 21072089) and the Natural Science
3627
dx.doi.org/10.1021/cg200603z |Cryst. Growth Des. 2011, 11, 3622–3628