4 E. Hupe, M. I. Calaza and P. Knochel, Chem.–Eur. J., 2003, 9,
2789–2796.
5 D. Imao, B. W. Glasspoole, V. S. Laberge and C. M. Crudden,
J. Am. Chem. Soc., 2009, 131, 5024–5025; D. L. Sandrock, L. Jean-
Gerard, C.-y. Chen, S. D. Dreher and G. A. Molander, J. Am.
Chem. Soc., 2010, 132, 17108–17110; T. Ohmura, T. Awano and
M. Suginome, J. Am. Chem. Soc., 2010, 132, 13191–13192.
6 A. Ros and V. K. Aggarwal, Angew. Chem., Int. Ed., 2009, 48,
6289–6292.
7 For recent examples of selective hydroboration of 1,3-dienes, see:
R. J. Ely and J. P. Morken, J. Am. Chem. Soc., 2010, 132,
2534–2535; Y. Sasaki, C. Zhong, M. Sawamura and H. Ito,
J. Am. Chem. Soc., 2010, 132, 1226–1227; J. Y. Wu, B. Morequ
and T. Ritter, J. Am. Chem. Soc., 2009, 131, 12915–12917.
8 For recent examples of enantioselective b-borations of a,b-unsaturated
carbonyls, see: A. Guzman-Martinez and A. H. Hoveyda, J. Am.
Chem. Soc., 2010, 132, 10634–10637; D. Noh, H. Chea, J. Ju and
J. Yun, Angew. Chem., Int. Ed., 2009, 48, 6062–6064; I. Chen,
M. Kanai and M. Shibasaki, Org. Lett., 2010, 12, 4098–4101.
9 For recent examples of enantioselective diboration, see:
L. T. Kliman, S. N. Mlynarski and J. P. Morken, J. Am. Chem.
Soc., 2009, 131, 13210–13211; H. E. Burks and J. P. Morken,
Chem. Commun., 2007, 4717–4725; and references cited therein.
10 S. A. Moteki, D. Wu, K. L. Chandra, D. S. Reddy and
J. M. Takacs, Org. Lett., 2006, 8, 3097–3100; S. A. Moteki and
J. M. Takacs, Angew. Chem., Int. Ed., 2008, 47, 894–897.
11 S. M. Smith and J. M. Takacs, J. Am. Chem. Soc., 2010, 132,
1740–1741; S. M. Smith, N. C. Thacker and J. M. Takacs, J. Am.
Chem. Soc., 2008, 130, 3734–3735.
12 D. A. Evans and G. C. Fu, J. Am. Chem. Soc., 1991, 113,
4042–4043.
13 M. Rubina, M. Rubin and V. Gevorgyan, J. Am. Chem. Soc., 2003,
125, 7198–7199.
14 For a review on substrate-directed reactions, see: A. H. Hoveyda,
D. A. Evans and G. C. Fu, Chem. Rev., 1993, 93, 1307–1370.
15 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815–3818.
For reviews on the synthetic utility of Weinreb amides, see: J. Singh,
J. Prakt. Chem., 2000, 342, 340–347; S. Balasubramaniam and
I. S. Aidhen, Synthesis, 2008, 3707–3738.
Scheme 1 (a) KHF2, MeOH/H2O (82%); (b) NaBO3, H2O/THF
(98%); (c) TBSCl, imidazole, DMAP, DMF (82%); (d) DIBAL-H,
THF (91%); (e) PhMgBr, THF (94%).
As demonstrated above, the CAHB-oxidation (i.e., workup
with basic H2O2) of b,g-unsaturated Weinreb amides can be used
to prepare b-hydroxyacids in good yields and excellent levels of
enantiopurity. Omitting the harsh oxidative workup by directly
subjecting the crude reaction mixture to flash chromatography
on silica gel, permits isolation of the chiral organoboronate.
For example, 8 is obtained in good yield (79%) from (E)-4.
Scheme 1 shows several subsequent transformations to illustrate
its synthetic utility. Conversion of 8 to the b-trifluoroborato
Weinreb amide 9 is accomplished in 82% yield by treatment with
KHF2. Mild oxidation of 8 with sodium perborate (NaBO3)
proceeds without amide hydrolysis to afford the b-hydroxy
Weinreb amide 10 (98% yield). Following TBS-protection
(82%), half reduction via treatment with DIBAL-H gives the
b-silyloxyaldehyde 11 (91%). Alternatively, addition of phenyl
Grignard reagent produces the b-silyloxyketone 12 (94%).
In summary, Weinreb amides are effective substrates for
carbonyl-directed CAHB of b,g-unsaturated alkenes. Large dif-
ferences in reactivity and selectivity are observed when Weinreb
amides are screened across a library of 1,3,2-dioxaborolane and
-dioxaborinane derivatives illustrating the importance of the
borane in the success of the reaction. It seems clear that the
structure of the borane must influence the relative stabilities and/
or reactivities of key intermediates. Mechanistic studies are in
progress.
16 The enantiopurity of (S)-3b was determined by subsequent benzylation
and chiral HPLC analysis.
17 C. J. Lata and C. M. Crudden, J. Am. Chem. Soc., 2010, 132,
131–137.
18 C. M. Crudden, Y. B. Hleba and A. C. Chen, J. Am. Chem. Soc.,
2004, 126, 9200–9201; A. M. Segarra, E. Daura-Oller, C. Claver,
J. M. Poblet, C. Bo and E. Fernandez, Chem.–Eur. J., 2004, 10,
6456–6467; P. V. Ramachandran, M. P. Jennings and
H. C. Brown, Org. Lett., 1999, 1, 1399–1402.
19 N. M. Hunter, C. M. Vogels, A. Decken, A. Bell and
S. A. Westcott, Inorg. Chim. Acta, 2011, 365, 408–413;
C. B. Fritschi, S. M. Wernitz, C. M. Vogels, M. P. Shaver,
A. Decken, A. Bell and S. M. Westcott, Eur. J. Inorg. Chem.,
2008, 779–785; and references cited therein.
Financial support for this research from the NSF (CHE-
0809637) is gratefully acknowledged. We thank B. P. Polez
(UNL Chemistry) for some key preliminary experiments and
the NSF (CHE-0091975, MRI-0079750) and NIH (SIG-1-510-
RR-06307) for the NMR spectrometers used in these studies
carried out in facilities renovated under NIH RR016544.
20 D. Mannig and H. Noth, Angew. Chem., Int. Ed. Engl., 1985, 24,
¨
878–879.
¨
21 Evans and co-workers briefly examined the use of TMDB in
catalyzed hydroboration, see: D. A. Evans, G. C. Fu and
A. H. Hoveyda, J. Am. Chem. Soc., 1992, 114, 6671–6679.
22 The rate of the uncatalyzed reaction remains slow relative to that
of the catalyzed reaction with unhindered boranes such as B5.
23 A. M. Carroll, T. P. O’Sullivan and P. J. Guiry, Adv. Synth. Catal.,
2005, 347, 609–631; C. M. Vogels and S. A. Westcott, Curr. Org.
Chem., 2005, 9, 687–699; I. Beletskaya and A. Pelter, Tetrahedron,
1997, 53, 4957–5026; K. Burgess and M. J. Ohlmeyer, Chem. Rev.,
1991, 91, 1179–1191.
24 Enantioswitching is also observed as a consequence of subtle
changes in the structure of the ligand, see: S. M. Smith and
J. M. Takacs, Org. Lett., 2010, 12, 4612–4615.
25 Although disproportionation presumably forms BH3, we do not
see evidence for it contributing significantly to hydroboration. See:
S. W. Hadebe and R. S. Robinson, Eur. J. Org. Chem., 2006,
4898–4904; and references cited therein.
Notes and references
1 D. S. Matteson, in Stereodirected Synthesis with Organoboranes,
ed. K. Hafner, J.-M. Lehn, C. W. Rees, P. R. Schleyer, B. M. Trost
and R. Zahradnık, Springer, Heidelberg, 1995, vol. 32.
´
2 C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003,
4695–4712; C. M. Vogels and S. A. Westcott, Curr. Org. Chem.,
2005, 9, 687–699; S. Nave, R. P. Sonawane, T. G. Elford and
V. K. Aggarwal, J. Am. Chem. Soc., 2010, 132, 17096–17098;
V. Bagutski, T. G. Elford and V. K. Aggarwal, Angew. Chem.,
Int. Ed., 2011, 50, 1080–1083.
3 D. S. Matteson, K. M. Sadhu and M. L. Peterson, J. Am. Chem.
Soc., 1986, 108, 810–819.
c
7814 Chem. Commun., 2011, 47, 7812–7814
This journal is The Royal Society of Chemistry 2011