10.1002/cplu.201900069
ChemPlusChem
COMMUNICATION
Hartmann, M. Mewald, Chem. Rev. 2013, 113, 402-441. d) T. Ohmura,
M. Suginome, Bull. Chem. Soc. Jpn. 2009, 82, 29-49. e) I. Beletskaya,
C. Moberg, Chem. Rev. 2006, 106, 2320-2354.
Experimental Section
To a THF solution (0.4 M) of fluoroarene 1 (0.2 mmol) were added
PhMe2Si–B(pin) (0.4 mmol) and NaOtBu (0.6 mmol). The mixture was
stirred in an argon atmosphere for 12 h, then water was added, and the
aqueous layer was extracted with Et2O (3 x 10 mL). The combined
organic layer was dried over Na2SO4 and concentrated under vacuum.
The crude product was purified by chromatography (silica gel) to give
silylated product 2.
[5]
[6]
[7]
[8]
[9]
Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am.
Chem. Soc. 2013, 135, 18730-18733.
Y. Nagashima, D. Yukimori, C. Wang, M. Uchiyama, Angew. Chem. Int.
Ed. 2018, 27, 8053ꢀ8057.
DFT calculation was performed at the M06L/6-31+G* level by using
Gaussian 16 and GRRM11.
M. J. Frisch, et al, Gaussian 16, Revision B.01, Gaussian, Inc.,
Wallingford CT, 2016. Full citation is listed in supporting information.
a) S. Maeda, Y. Osada, K. Morokuma, K. Ohno, GRRM 11, Version
11.03. 2012. b) S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem.
Phys. 2013, 15, 3683-3701. c) K. Ohno, S. Maeda, J. Phys. Chem. A
2006, 110, 8933–8941. d) S. Maeda, K. Ohno, J. Phys. Chem. A 2005,
109, 5742–5753. e) K. Ohno, S. Maeda, Chem. Phys. Lett. 2004, 384,
277–282.
Acknowledgements
This work was supported by a JSPS Grant-in-Aid for Scientific
Research on Innovative Areas (No. 17H05430), JSPS KAKENHI
(S) (No. 17H06173) (to M. U.), and Grant-in-Aid for Scientific
Research (C) (No. 18K06544, C.W.).
[10]
[11]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
For recent reviews involving C–F bond functionalization, see: a) T.
Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115,
931-972. b) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014,
509, 299-309. c) Z.-J. Shi, S.-D. Yang, in Homogeneous Catalysis for
Unreactive Bond Activation; John Wiley & Sons, Inc., 2014; pp. 203-
268. d) F. Kakiuchi, T. Kochi, S. Murai, Synlett 2014, 25, 2390-2414.
e) T. Braun, F. Wehmeier, Eur. J. Inorg. Chem. 2011, 613-625. f) B. M.
Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K.
Garg, V. Percec, Chem. Rev. 2011, 111, 1346-1416. g) A. Lei, W. Liu,
C. Liu, M. Chen, Dalton Trans. 2010, 39, 10352-10361. h) H. Amii, K.
Uneyama, Chem. Rev. 2009, 109, 2119-2183.
Keywords: C–F bond cleavage • organicsilicon compounds •
silylation • silyl anions • nucleophilic aromatic substitution
[1]
For representative reviews, see: a) C. Präsang, D. Scheschkewitz in
Functional Molecular Silicon Compounds II. Structure and Bonding,
Vol 156 (Ed.: D. Scheschkewitz) Springer, Cham, 2013, pp1-74. b) V.
Y. Lee, A. Sekiguchi in Organometallic compounds of low-coordinate
Si, Ge, Sn, and Pb (Eds.: V. Y. Lee, A. Sekiguchi), Wiley, Chichester,
2010, pp89-131. c) M. Saito, M. Yoshioka, Coord. Chem. Rev. 2005,
249, 765-780. d) H. W. Lerner, Coord. Chem. Rev. 2005, 249, 781-798.
e) A. Sekiguchi, V. Y. Lee, M. Nanjo, Coord. Chem. Rev. 2000, 210,
11-45. f) P. D. Lickiss, C. M. Smith, Coord. Chem. Rev. 1995, 145, 75–
124.
[12]
Very recently, a Ni-catalyzed defluorosilylation reaction via silylborane
as silyl anion source was also reported: B. Cui, S. Jia, E. Tokunaga, N.
Shibata, Nat. Commun. 2018, 9, 4393.
[13]
[14]
[15]
[16]
S. Mallick, P. Xu, E. -U. Würthwein, A. Studer, Angew. Chem. Int. Ed.
58, 283-287.
[2]
[3]
For selected reviews, see: a) S. Bähr, W. Xue, M. Oestreich, ACS
Catal. 2019, 9, 16-24. b) M. Uchiyama, C. Wang, Top. Organomet.
Chem, 2014, 47, 59-202. c) S. Nakamura, M. Yonehara, M. Uchiyama,
Chem. Eur. J. 2008, 14, 1068-1078.
a) F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-VCH,
Weinheim, 2013. b) F. Terrier, Chem. Rev. 1982, 82, 77-152.
E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem. 2018, 10,
917-923.
For representative examples, see: a) C. Fopp, K. Isaac, E. Romain, F.
Chemla, F. Ferreira, O. Jackowski, M. Oestreich, A. Perez-Luna,
Synthesis 2017, 49, 724-735. b) C. Fopp, E. Romain, K. Isaac, F.
Chemla, F. Ferreira, O. Jackowski, M. Oestreich, A. Perez-Luna, Org.
Lett. 2016, 18, 2054-2057. c) V. N. Bochatay, Y. Sanogo, F. Chemla, F.
Ferreira, O. Jackowski, A. Perez-Luna, Adv. Syn. Catal. 2015, 357,
2809-2814. d) H. Li, F. Hung-Low, C. Krempner, Organometallics 2012,
31, 7117-7124. e) M. Yonehara, S. Nakamura, A. Muranaka, M.
Uchiyama, Chem. Asian J. 2010, 5, 452-455. f) S. Nakamura, M.
Uchiyama, J. Am. Chem. Soc. 2007, 129, 28-29. g) G. Auer, M.
Oestreich, Chem. Commun. 2006, 42, 311-313. h) S. Nakamura, M.
Uchiyama, T. Ohwada, J. Am. Chem. Soc. 2005, 127, 13116-13117. i)
A. Krief, W. Dumont, D. Baillieul, Tetrahedron Lett. 2005, 46, 951-953.
j) S. Nakamura, M. Uchiyama, T. Ohwada, J. Am. Chem. Soc. 2004,
126, 11146-11147. k) B. H. Lipshutz, J. A. Sclafani, T. Takanami, J.
Am. Chem. Soc. 1998, 120, 4021-4022. l) I. Fleming, D. Lee,
Tetrahedron Lett. 1996, 37, 6929-6930. n) I. Fleming, D. Lee,
Tetrahedron Lett. 1996, 37, 6929-6930. o) A. Vaughan, R. D. Singer,
Robert D. Tetrahedron Lett. 1995, 36, 5683-5686. p) R. A. N. C.
Crump, I. Fleming, C. J. Urch, J. Chem. Soc., Perkin Trans. 1 1994,
701-706. q) K. Wakamatsu, T. Nonaka, Y. Okuda, W. Tückmantel, K.
Oshima, K. Utimoto, H. Nozaki, Tetrahedron 1986, 42, 4427-4428. r) J.
Hibino, S. Matsubara, Y. Morizawa, K. Oshima, H. Nozaki,
Tetrahedron Lett. 1984, 25, 2151-2152.
For critical reviews, see: a) A. Williams, Acc. Chem. Res. 1989, 22,
387-392. b) A. Williams, Chem. Soc. Rev. 1994, 23, 93-100. c) S.
Chiba, K. Ando, K. Narasaka, Synlett 2009, 2549-2564. d) C. N.
Neumann, T. Ritter, Acc. Chem. Res. 2017, 50, 2822-2833.
For recent reports involving computational study on the base-mediated
B–Si bond cleavage of silylboranes, see: a) P. Jain, S. Pal, V. Avasare,
Organometallics 2018, 37, 1141-1149. b) B. Wang, Q. Zhang, J. Jiang,
H. Yu, Y. Fu, Chem. Eur. J. 2017, 23, 17249-17256. c) R. Uematsu, E.
Yamamoto, S. Maeda, H. Ito, T. Taketsugu, J. Am. Chem. Soc. 2015,
137, 4090-4099.
[17]
[18]
[19]
A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140-
3152.
For a recent review on the deprotonation of benzylic compounds via
strong base and their synthetic applications, see: Y. Yamashita, S.
Kobayashi, Chem. Eur. J. 2018, 24, 10-17
[20]
[21]
X.-W. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019, 58, 2064-
2068.
Organosodium compounds exhibit stronger carbanionic nature than
organolithium due to the lower electronegativity of sodium than lithium
and hence have extremely high reactivity and low stability. On the
other hand, organosodium compounds are less commercially available
compared with organolithium. These issues limited the application of
organosodium chemistry. Similar differences/problems also occur in
the silyl anion chemistry. As reflected in the structure of Si-Na in
current DFT calculation, Si and Na are more separated (compared
with the computation results in ref. 13), and Na+ shows a strong π-
cation interaction with Ph ring, indicating a strong anionic nature of Si.
Hence, it is known that Si-Na is less stable than Si-Li species, which
[4]
For representative reviews involving Si–B bond activation of
silylborane, see: a) M. B. Ansell, O. Navarro, J. Spencer, Coord. Chem.
Rev. 2017, 336, 54-77. b) A. B. Cuenca, R. Shishido, H. Ito, E.
Fernández, Chem. Soc. Rev. 2017, 46, 415 - 430. c) M. Oestreich, E.
This article is protected by copyright. All rights reserved.