5 (a) J. S. L. Ibaceta-Lizana, A. H. Jackson, N. Prasitpan and
P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 2, 1987,
1221–1226; (b) P. Linnepe, A. M. Schmidt and P. Eilbracht, Org.
Biomol. Chem., 2006, 4, 302–313; (c) G. Sirasani and
R. B. Andrade, Org. Lett., 2009, 11, 2085–2088; For total synthesis
see: (d) P. Magnus, B. Mugrage, M. R. DeLuca and G. A. Cain,
J. Am. Chem. Soc., 1989, 111, 786–789; (e) P. Magnus,
B. Mugrage, M. DeLuca and G. A. Cain, J. Am. Chem. Soc.,
1990, 112, 5220–5230; (f) J. R. Fuchs and R. L. Funk, J. Am.
Chem. Soc., 2004, 126, 5068–5069; (g) A. Sabahi, A. Novikov and
J. D. Rainier, Angew. Chem., Int. Ed., 2006, 45, 4317–4320;
(h) J. Yang, H. Wu, L. Shen and Y. Qin, J. Am. Chem. Soc.,
2007, 129, 13794–13795.
6 H. Zuleta-Prada and L. D. Miranda, Tetrahedron Lett., 2009, 50,
5336–5339.
7 (a) L. El Kaim, L. Grimaud, L. D. Miranda and E. Vieu,
Tetrahedron Lett., 2006, 47, 8259–8261; (b) L. El Kaim,
L. Grimaud, L. D. Miranda, E. Vieu, M. A. Cano-Herrera and
K. Perez-Labrada, Chem. Commun., 2010, 46, 2489–2491;
(c) R. Gamez-Montano, T. Ibarra-Rivera, L. El Kaim and
L. D. Miranda, Synthesis, 2010, 1285–1290.
Scheme 2 One-pot conditions for the preparation of spiroindolines.
In conclusion, we have disclosed a new copper-catalyzed
spirocyclization. The reaction probably involves radicals
generated from enolates by a copper(II)-triggered oxidation.
This simple procedure produces remarkably complex final
structures. In these one-pot reactions, the four-component
nature of the first Ugi step contributes to the formation
of complex alkaloid-like structures with high diversity. The
programmed combination of this multi-component reaction
with sequential secondary transformations has already been
recognized as a powerful approach to reach high molecular
complexity. Indeed, many cycloadditions, cyclocondensations
or organometallic couplings have been reported as Ugi post-
condensations. In contrast, radical cyclizations still remain
underutilized.7,17 This new synthesis of complex indolines in
one step underscores the potential of such synthetic approaches.
This work was made possible by a grant from CONACYT.
8 L. El Kaım, L. Grimaud and E. Vieu, Org. Lett., 2007, 9,
¨
4171–4173.
9 For examples of radical additions to an indole see:
(a) S. R. Flanagan, D. C. Harrowven and M. Bradley, Tetrahedron
Lett., 2003, 44, 1795–1798; (b) S. T. Hilton, T. C. T. Ho,
G. Plevaljcic, M. Schulte and K. J. Jones, Chem. Commun., 2001,
209–210; (c) G. W. Gribble, H. L. Fraser and J. C. Badenock,
Chem. Commun., 2001, 805–806; (d) L. D. Miranda, R. Cruz-
Almanza, M. Pavon, Y. Romero and J. M. Muchowski,
Tetrahedron Lett., 2000, 41, 10181–10184; (e) W. Zhang and
G. Pugh, Tetrahedron Lett., 1999, 40, 7591–7594; (f) S.-F. Wang,
C.-P. Chuang and W.-H. Lee, Tetrahedron, 1999, 55, 6109–6118;
(g) F. E. Ziegler and M. Belema, J. Org. Chem., 1997, 62,
1083–1094; (h) M.-L. Bennasar, T. Roca, R. Griera and
J. Bosch, J. Org. Chem., 2001, 66, 7547–7551.
10 For some reviews see: (a) B. Zhan and A. Thompson, Tetrahedron,
2004, 60, 2917–2935; (b) M. J. Schultz and M. S. Sigman,
Tetrahedron, 2006, 62, 8227–8241; (c) T. Punniyamurthy,
S. Velusamy and J. Iqbal, Chem. Rev., 2005, 105, 2329–2363;
(d) T. Punniyamurthy and L. Rout, Coord. Chem. Rev., 2008,
252, 134–154; (e) S. M. Samec, A. H. Ell and J.-E. Backvall,
Chem.–Eur. J., 2005, 11, 2327–2334; (f) P. Gamez, P. G. Aubel,
W. L. Driessen and J. Reedijk, Chem. Soc. Rev., 2001, 30, 376–385.
11 (a) E. E. van Tamelen, M. Shamma, A. W. Burgstahler,
J. Wolinsky, R. Tamm and P. A. Aldrich, J. Am. Chem. Soc.,
1958, 80, 5006–5007; (b) E. E. van Tamelen, M. Shamma,
A. W. Burgstahler, J. Wolinsky, R. Tamm and P. E. Aldrich,
J. Am. Chem. Soc., 1969, 91, 7315–7333; (c) E. E. Van Tamelen,
J. Weber, G. P. Schiemenz and W. Baker, Bioorg. Chem., 1976, 5,
283–308.
Notes and references
1 (a) A. P. Antonchick, C. Gerding-Reimers, M. Catarinella,
M. Schurmann, H. Preut, S. Ziegler, D. Rauh and
¨
H. Waldmann, Nat. Chem., 2010, 2, 735–740; (b) J. W. H. Li
and J. C. Vederas, Science, 2009, 325, 161–165; (c) K. Kumar and
H. Waldmann, Angew. Chem., Int. Ed., 2009, 48, 3224–3242;
(d) A. L. Harvey, Drug Discovery Today, 2008, 13, 894–901;
(e) A. Ganesan, Curr. Opin. Chem. Biol., 2008, 12, 306–317;
(f) D. J. Newman and G. M. Cragg, J. Nat. Prod., 2007, 70,
461–477.
2 (a) F. Ungemach and J. M. Cook, Heterocycles, 1978, 9,
1089–1119; (b) C.-T. Liu, Q.-W. Wang and C.-H. Wang, J. Am.
Chem. Soc., 1981, 103, 4634–4635; (c) S. M. Verbitski,
C. L. Mayne, R. A. Davis, G. P. Concepcion and C. M. Ireland,
J. Org. Chem., 2002, 67, 7124–7126; (d) A. Numata, C. Takahashi,
Y. Ito, T. Takada, K. Kawai, Y. Usami, E. Matsumura,
M. Imachi, T. Ito and T. Hasegawa, Tetrahedron Lett., 1993, 34,
2355–2358; (e) R. Jadulco, R. A. Edrada, R. Ebel, A. Berg,
K. Schaumann, V. Wray, K. Steube and P. Proksch, J. Nat. Prod.,
2004, 67, 78–81; (f) P. Siengalewicz, T. Gaich and J. Mulzer,
Angew. Chem., Int. Ed., 2008, 47, 8170–8176.
12 (a) M. Kimura, M. Futamata, R. Mukai and Y. Tamaru, J. Am.
Chem. Soc., 2005, 127, 4592–4593; (b) W.-B. Liu, H. He, L.-X. Dai
and S.-L. You, Org. Lett., 2008, 10, 1815–1818; (c) W.-B. Liu,
H. He, L.-X. Dai and S.-L. You, Synthesis, 2009, 2076–2082;
(d) L. M. Stanley and J. F. Hartwig, Angew. Chem., Int. Ed.,
2009, 48, 7841–7844; (e) Q.-F. Wu, H. He, W.-B. Liu and
S.-L. You, J. Am. Chem. Soc., 2010, 132, 11418–11419.
13 Y.-X. Jia and E. P. Kundig, Angew. Chem., Int. Ed., 2009, 48,
1636–1639; J. E. M. N. Klein, A. Perry, D. S. Pugh and
R. J. K. Taylor, Org. Lett., 2010, 12, 3446–3449.
3 (a) H. Hayashi, H. Matsumoto and K. Akiyama, Biosci.,
Biotechnol., Biochem., 2004, 68, 753–756; (b) B. Andersen,
J. Smedsgaard and J. C. Frisvad, J. Agric. Food Chem., 2004, 52,
2421–2428; (c) P. W. Dalsgaard, J. W. Blunt, M. H. G. Munro,
J. C. Frisvad and C. Christophersen, J. Nat. Prod., 2005, 68,
258–261; (d) L. J. Wigley, P. G. Mantle and D. A. Perry,
Phytochemistry, 2006, 67, 561–569; For the total synthesis, see:
(e) Z. Zuo, W. Xie and D. Ma, J. Am. Chem. Soc., 2010, 132,
13226–13228.
4 (a) S. M. Verbitski, C. L. Mayne, R. A. Davis, G. P. Concepcion
and C. M. Ireland, J. Org. Chem., 2002, 67, 7124–7126; For the
total synthesis, see: (b) J. R. Fuchs and R. L. Funk, J. Am. Chem.
Soc., 2004, 126, 5068–5069; (c) H. Wu, F. Xue, X. Xiao and
Y. Qin, J. Am. Chem. Soc., 2010, 132, 14052–14054.
14 P. S. Baran and J. M. Richter, J. Am. Chem. Soc., 2004, 126,
7450–7451; J. M. Richter, B. W. Whitefield, T. J. Maimone,
D. W. Lin, M. P. Castroviejo and P. S. Baran, J. Am. Chem.
Soc., 2007, 129, 12857–12869; P. S. Baran and J. M. Richter,
J. Am. Chem. Soc., 2005, 127, 15394–15396; P. S. Baran,
T. J. Maimone and J. M. Richter, Nature, 2007, 446, 404–408.
15 The fact that the reaction only gives one diastereomer is rather
surprising for the cyclization of a radical species. It may be
explained either by a degradation of the isomer unable to cyclize
with the pendant amide or by a ring-opening of the spiro iminium
A leading to an epimerization of the peptidyl position.
16 1f is probably oxidized via its enol tautomer.
17 H. Yu, W. L. Sun, R. Gao and M. S. Zhang, Chin. J. Org. Chem.,
2010, 30, 890–893.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8145–8147 8147