Notes and references
1 J. W. Loder and R. H. Nearn, Heterocycles, 1977, 7, 113.
2 A. A. E. El-Zayat, N. R. Ferrigni, T. G. McCloud, A. T. McKenzie,
S. R. Byrn, J. M. Cassady, C.-j. Chang and J. L. McLaughlin,
Tetrahedron Lett., 1985, 26, 955.
3 (a) J. P. Gesson, J. C. Jacquesy and M. Mondon, Tetrahedron
Lett., 1987, 28, 3945; (b) J. P. Gesson, J. C. Jacquesy and
M. Mondon, Tetrahedron Lett., 1987, 28, 3949.
4 H. Asmah and H. L. P. Azimahtol, Proc. Malays. Biochem. Soc.
Conf., 1993, 18, 173.
5 S. H. Inayat-Hussain, A. B. Osman, L. B. Din and N. Taniguchi,
Toxicol. Lett., 2002, 131, 153.
6 S. M. Colegate, L. B. Din, A. Latiff, K. M. Salleh,
M. W. Samsudin, B. W. Skelton, K.-i. Tadano, A. H. White and
Z. Zakaria, Phytochemistry, 1990, 29, 1701.
7 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
8 (a) Y. Ueno, K.-i. Tadano, S. Ogawa, J. L. McLaughlin and
A. Alkofahi, Bull. Chem. Soc. Jpn., 1989, 62, 2328;
(b) J. M. Harris and G. A. O’Doherty, Org. Lett., 2000, 2, 2983;
(c) J. M. Harris and G. A. O’Doherty, Tetrahedron, 2001, 57, 5161;
(d) A. Hiratate, H. Kiyota and T. Oritani, Nippon
Noyaku Gakkaishi, 2001, 26, 361; (e) A. Hiratate, H. Kiyota,
T. Noshita, R. Takeuchi and T. Oritani, Nippon Noyaku
Gakkaishi, 2001, 26, 366; (f) X. Peng, A. Li, J. Lu, Q. Wang,
X. Pan and A. S. C. Chan, Tetrahedron, 2002, 58, 6799;
(g) J. S. Yadav, G. Rajaiah and A. K. Raju, Tetrahedron Lett.,
2003, 44, 5831; (h) J. S. Yadav, A. K. Raju, P. P. Rao and
G. Rajaiah, Tetrahedron: Asymmetry, 2005, 16, 3283; (i) P. R. R.
Meira, A. V. Moro and C. R. D. Correia, Synthesis, 2007, 2279;
(j) (formal) B. M. Trost, A. Aponick and B. N. Stanzl, Chem.–Eur. J.,
2007, 13, 9547.
9 W. P. Unsworth, DPhil Thesis, University of Oxford, 2009.
10 (a) A. Aponick, C.-Y. Li and B. Biannic, Org. Lett., 2008, 10, 669;
(b) A. Aponick and B. Biannic, Synthesis, 2008, 3356.
11 Selected reviews: (a) A. Arcadi, Chem. Rev., 2008, 108, 3266;
(b) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239;
(c) J. Muzart, Tetrahedron, 2008, 64, 5815; (d) A. S. K. Hashmi and
M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766; (e) A. S. K. Hashmi,
Scheme 5 Results for the Au-catalysed cyclisation of diols 19–21 (cat.
Ph3PAuCl, cat. AgOTf, 4 A MS, CH2Cl2, 20 1C, 2 h). [R = CH2OTBS].
Chem. Rev., 2007, 107, 3180; (f) A. Furstner and P. W. Davies,
¨
Angew. Chem., Int. Ed., 2007, 46, 3410; (g) A. S. K. Hashmi and
G. J. Hutchings, Angew.Chem., Int. Ed., 2006, 45, 7896.
12 J. Robertson, W. P. Unsworth and S. G. Lamont, Tetrahedron,
2010, 66, 2363. In an updated route, compound 10 was prepared
conveniently from acetonide 9 as follows: (i) PPh3, I2, imidazole,
toluene, 70 1C, 1 h (86%); (ii) t-BuLi, THF, ꢁ78 1C - 20 1C, 1 h
(92%); (iii) Me2NH, HATU, i-Pr2NEt, THF/DMF, 20 1C, 2 h
(65%); (iv) PhMgBr, THF, 0 1C, 1 h (68%).
13 (a) Preparation: H. Stach, W. Huggenberg and M. Hesse, Helv. Chim.
Acta, 1987, 70, 369; (b) as a component in cross metathesis:
M. A. Boudreau and J. C. Vederas, Org. Biomol. Chem., 2007, 5, 627.
14 (a) J. G. Gillhouley and T. K. M. Shing, J. Chem. Soc., Chem.
Commun., 1988, 976; (b) T. K. M. Shing and J. G. Gillhouley,
Tetrahedron, 1994, 50, 8685.
15 M. Ono, X. Y. Zhao, Y. Shida and H. Akita, Tetrahedron, 2007,
63, 10140.
16 For example: M. Bandini, M. Monari, A. Romaniello and
M. Tragni, Chem.–Eur. J., 2010, 16, 14272.
Fig. 1 A syn-SN20 hydroxyl displacement model to relate substrate
17 A. Aponick and B. Biannic, Org. Lett., 2011, 13, 1330.
18 (S,S)-22 is readily available from D-mannitol: Y. Masaki,
H. Arasaki and A. Itoh, Tetrahedron Lett., 1999, 40, 4829.
19 (R,R)-22 is not reported but the equivalent, (R)-23, undergoes
efficient homo-dimerisation under cross metathesis conditions to
give (R,R)-22. This represents a convenient three-step synthesis
of both diol 22 enantiomers from (R)- and (S)-glycidol.
(a) Preparation of (ꢀ)-23 from (ꢀ)-glycidol: R. J. Davoille,
D. T. Rutherford and S. D. R. Christie, Tetrahedron Lett.,
2000, 41, 1255; (b) application to (R)-23: T. Motoki, K. Takeda,
Y. Kita, M. Takaishi, Y. Suzuki and T. Ishida, U.S. Patent 2010/
0093999 A1.
20 For experimental and theoretical evidence that analogous
aminoauration takes place in a stereochemically anti-fashion:
R. L. LaLonde, W. E. Brenzovich Jr., D. Benitez, E. Tkatchouk,
K. Kelley, W. A. Goddard III and F. D. Toste, Chem. Sci., 2010,
1, 226.
and product diastereomers.
Our model (Fig. 1) places the Au(I)-centre loosely
co-ordinated to both hydroxyls, mediating an overall syn-SN20
displacement. We stress that this is merely a rule-of-thumb
mnemonic and a stereochemically equivalent anti-alkoxyauration/
anti-elimination process has been advocated.17,20
In conclusion, application of the Au(I)-mediated cyclo-
etherification of monoallylic diols to the synthesis of
(+)-isoaltholactone, and a follow-up study, have revealed
further elements of stereocontrol in this reaction. In particular,
secondary structural elements temper predictions based upon
strict control by the allylic alcohol configuration.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7659–7661 7661