Journal of the American Chemical Society
Article
P. E.; White, M. C. Catalyst-Controlled Aliphatic C−H Oxidations
with a Predictive Model for Site-Selectivity. J. Am. Chem. Soc. 2013,
135, 14052−14055. (c) Adams, A. M.; Du Bois, J. Organocatalytic
C−H Hydroxylation with Oxone® Enabled by an Aqueous
Fluoroalcohol Solvent System. Chem. Sci. 2014, 5, 656−659.
(d) See, Y. Y.; Herrmann, A. T.; Aihara, Y.; Baran, P. S. Scalable
C−H Oxidation with Copper: Synthesis of Polyoxypregnanes. J. Am.
Chem. Soc. 2015, 137, 13776−13779.
(11) In situ preparation of Ru complexes affords multiple products,
as determined by H NMR.
(12) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed Phosphine
2,2’-Bipyridine Complexes of Ruthenium. Inorg. Chem. 1978, 17,
3334−3341.
(13) Ashford, D. L.; Brennaman, M. K.; Brown, R. J.; Keinan, S.;
Concepcion, J. J.; Papanikolas, J. M.; Templeton, J. L.; Meyer, T. J.
Varying the Electronic Structure of Surface-Bound Ruthenium(II)
Polypyridyl Complexes. Inorg. Chem. 2015, 54, 460−469.
(14) A Ru(II) precatalyst derived from 4,4′-bis(dimethylamino)-
2,2′-bipyridine fails to catalyze C−H hydroxylation.
(15) Turnover differential between precatalysts is more pronounced
at lower catalyst loadings.
(16) Cyclic voltammogram recordings were performed exclusively
with Ru-carbonato complexes, as the corresponding dichloro adducts
yielded featureless CVs.
1
́
́
̃
ez, M. E.; Bernardini, C. B.; Mello,
(5) Asensio, G.; Gonzalez-Nun
R.; Adam, W. Regioselective Oxyfunctionalization of Unactivated
Tertiary and Secondary C-H Bonds of Alkylamines by Methyl-
(Trifluoromethyl)Dioxirane in Acid Medium. J. Am. Chem. Soc. 1993,
115, 7250−7253.
(6) (a) Dangel, B. D.; Johnson, J. A.; Sames, D. Selective
Functionalization of Amino Acids in Water: A Synthetic Method
via Catalytic C−H Bond Activation. J. Am. Chem. Soc. 2001, 123,
8149−8150. (b) Malik, H. A.; Taylor, B. L. H.; Kerrigan, J. R.; Grob,
J. E.; Houk, K. N.; Du Bois, J.; Hamann, L. G.; Patterson, A. W. Non-
Directed Allylic C−H Acetoxylation in the Presence of Lewis Basic
Heterocycles. Chem. Sci. 2014, 5, 2352−2361. (c) Lee, M.; Sanford,
M. S. Platinum-Catalyzed, Terminal-Selective C(sp3)−H Oxidation of
Aliphatic Amines. J. Am. Chem. Soc. 2015, 137, 12796−12799.
(d) Howell, J. M.; Feng, K.; Clark, J. R.; Trzepkowski, L. J.; White, M.
C. Remote Oxidation of Aliphatic C−H Bonds in Nitrogen-
Containing Molecules. J. Am. Chem. Soc. 2015, 137, 14590−14593.
(e) Adams, A. M.; Du Bois, J.; Malik, H. A. Comparative Study of the
Limitations and Challenges in Atom-Transfer C−H Oxidations. Org.
Lett. 2015, 17, 6066−6069. (f) Mbofana, C. T.; Chong, E.;
Lawniczak, J.; Sanford, M. S. Iron-Catalyzed Oxyfunctionalization of
Aliphatic Amines at Remote Benzylic C−H Sites. Org. Lett. 2016, 18,
4258−4261. (g) Lee, M.; Sanford, M. S. Remote C(sp3)−H
Oxygenation of Protonated Aliphatic Amines with Potassium
Persulfate. Org. Lett. 2017, 19, 572−575. (h) Schultz, D. M.;
(17) Dobson, J. C.; Meyer, T. J. Redox Properties and Ligand Loss
Chemistry in Aqua/Hydroxo/Oxo Complexes Derived from cis- and
trans-[(bpy)2RuII(OH2)2]2+. Inorg. Chem. 1988, 27, 3283−3291.
(18) (a) Che, C.-M.; Leung, W.-H. A cis-Dioxoruthenium(VI)
Complex as Active Oxidant of Chloride and Organic Substrates;
Preparation, Characterization, and Reactivity of cis-[RuVI(6,6′-
Cl2bpy)2O2]2+. J. Chem. Soc., Chem. Commun. 1987, 18, 1376−
1377. (b) Che, C. M.; Leung, W. H.; Li, C. K.; Poon, C. K. Synthesis,
Reactivities and Electrochemistry of Trans-Dioxoruthenium(VI)
Complexes of π-Aromatic Diimines. J. Chem. Soc., Dalton Trans.
1991, 3, 379−384. (c) Che, C.-M.; Cheng, K.-W.; Chan, M. C. W.;
Lau, T.-C.; Mak, C.-K. Stoichiometric and Catalytic Oxidations of
Alkanes and Alcohols Mediated by Highly Oxidizing Ruthenium−
Oxo Complexes Bearing 6,6‘-Dichloro-2,2‘-Bipyridine. J. Org. Chem.
2000, 65, 7996−8000.
(19) Cyclic voltammograms of precatalyst 1 measured in either
aqueous HClO4 or a 1:1 mixture of HClO4/AcOH showed similar
redox behavior; see Figure S2 for comparison.
́
Levesque, F.; DiRocco, D. A.; Reibarkh, M.; Ji, Y.; Joyce, L. A.;
(20) (a) Che, C.-M.; Leung, W.-H.; Poon, C.-K. Oxidation of
Organic Substrates Catalysed by Trans-[RuIII(phen)2(OH)(OH2)]-
[ClO4]2 and Trans-[RuIII(bpy)2(OH)(OH2)][ClO4]2. J. Chem. Soc.,
Chem. Commun. 1987, 3, 173−175. (b) Lau, T. C.; Che, C. M.; Lee,
W. O.; Poon, C. K. Ruthenium Catalysed Oxidation of Alkanes with
Alkylhydroperoxides. J. Chem. Soc., Chem. Commun. 1988, 21, 1406−
1407.
(21) We assume based on earlier work by Meyer (see ref 17) that Ru
oxidants generated under chemical and electrochemical conditions are
equivalent.
Dropinski, J. F.; Sheng, H.; Sherry, B. D.; Davies, I. W. Oxy-
functionalization of the Remote C−H Bonds of Aliphatic Amines by
Decatungstate Photocatalysis. Angew. Chem., Int. Ed. 2017, 56,
15274−15278. (i) Olivo, G.; Farinelli, G.; Barbieri, A.; Lanzalunga,
O.; Di Stefano, S.; Costas, M. Supramolecular Recognition Allows
Remote, Site-Selective C−H Oxidation of Methylenic Sites in Linear
Amines. Angew. Chem., Int. Ed. 2017, 56, 16347−16351. (j) Dantig-
́
nana, V.; Milan, M.; Cusso, O.; Company, A.; Bietti, M.; Costas, M.
Chemoselective Aliphatic C−H Bond Oxidation Enabled by Polarity
Reversal. ACS Cent. Sci. 2017, 3, 1350−1358. (k) Nanjo, T.; De
Lucca, E. C.; White, M. C. Remote, Late-Stage Oxidation of Aliphatic
C−H Bonds in Amide-Containing Molecules. J. Am. Chem. Soc. 2017,
139, 14586−14591. (l) Jana, S.; Ghosh, M.; Ambule, M.; Sen Gupta,
S. Iron Complex Catalyzed Selective C−H Bond Oxidation with
Broad Substrate Scope. Org. Lett. 2017, 19, 746−749. (m) Kawamata,
Y.; Yan, M.; Liu, Z.; Bao, D. H.; Chen, J.; Starr, J. T.; Baran, P. S.
Scalable, Electrochemical Oxidation of Unactivated C−H Bonds. J.
Am. Chem. Soc. 2017, 139, 7448−7451. (n) Cooper, J. C.; Luo, C.;
Kameyama, R.; Van Humbeck, J. F. Combined Iron/Hydroxytriazole
Dual Catalytic System for Site Selective Oxidation Adjacent to
Azaheterocycles. J. Am. Chem. Soc. 2018, 140, 1243−1246.
(7) Mack, J. B. C.; Gipson, J. D.; Du Bois, J.; Sigman, M. S.
Ruthenium-Catalyzed C−H Hydroxylation in Aqueous Acid Enables
Selective Functionalization of Amine Derivatives. J. Am. Chem. Soc.
2017, 139, 9503−9506.
(22) Chiappini, N. D.; Mack, J. B. C.; Du Bois, J. Intermolecular
C(sp3)−H Amination of Complex Molecules. Angew. Chem., Int. Ed.
2018, 57, 4956−4959.
(23) (a) Vikse, K. L.; Ahmadi, Z.; Luo, J.; van der Wal, N.; Daze, K.;
Taylor, N.; McIndoe, J. S. Pressurized sample infusion: An easily
calibrated, low volume pumping system for ESI-MS analysis of
reactions. Int. J. Mass Spectrom. 2012, 323−324, 8−13. (b) Yunker, L.
P. E.; Stoddard, R. L.; McIndoe, J. S. Practical approaches to the ESI-
MS analysis of catalytic reactions. J. Mass Spectrom. 2014, 49, 1−8.
(c) Hesketh, A. V.; Nowicki, S.; Baxter, K.; Stoddard, R. L.; McIndoe,
J. S. Simplified Real-Time Mass Spectrometric Analysis of Reactions.
Organometallics 2015, 34, 3816−3819. (d) Theron, R.; Wu, Y.;
Yunker, L. P. E.; Hesketh, A. V.; Pernik, I.; Weller, A. S.; McIndoe, J.
S. Simultaneous Orthogonal Methods for the Real-Time Analysis of
Catalytic Reactions. ACS Catal. 2016, 6, 6911−6917.
(8) Chan, S. L. F.; Kan, Y. H.; Yip, K. L.; Huang, J. S.; Che, C.-M.
Ruthenium Complexes of 1,4,7-Trimethyl-1,4,7-Triazacyclononane
for Atom and Group Transfer Reactions. Coord. Chem. Rev. 2011,
255, 899−919.
(24) Chromatographs of observed species are normalized by first
dividing the maximum intensity Ru(102) peak in the isotope
distribution by the total ion count at that time point. A second
normalization factor is applied to set the maximum normalized
intensity of each species in the ion chromatograph to “1”.
(25) As noted previously, the carbonato and dichloro complexes
perform identically for all substrates examined.
(26) Analogous trends were observed for precatalysts 2 and 3, with
signals corresponding to high-valent Ru compounds growing in
sharply during the burst phase and decreasing rapidly as the reaction
(9) Lee, S.; Fuchs, P. L. Chemospecific Chromium[VI] Catalyzed
Oxidation of C−H Bonds at −40 °C. J. Am. Chem. Soc. 2002, 124,
13978−13979.
(10) Bipyridine complexes of Mn and Fe fail to catalyze
hydroxylation when reactions are performed in aqueous acetic acid;
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX