the world over the years, to date it remains impossible to
realize this transformation without recourse to singlet oxy-
gen, ozone (only one case), or Et3SiOOOH5c,6 (short-lived
species generated in situ from Et3SiH and ozone, for
simplified QHS analogues so far). As all the reactions
before and after this step only involve chemistries rather
commonly employed in synthesis and potential alterna-
tives often exist, it is no exaggeration that, in fact, the real
challenge in the synthesis of QHS is the incorporation of a
hydroperoxyl group ontothe C-12a in a “fully” substituted
precursor (i.e., making the O-1/C-12a σ bond).
the synthesis of relatively simple/less hindered organic
peroxides, with the initial bonding of H2O2 to a carbon
framework most commonly via perketal7 formation or
alkylation by a carbocation generated in situ from hydro-
zines8 or alkenes,9 or a ring-opening reaction of epoxides10
(oxiranes) or oxetanes.11 However, because of the large
structural difference between those peroxides derived from
H2O2 and QHS, along with the apparent limitations of
existing protocols, up to now synthesis of QHS using H2O2
has been a “mission impossible”; even the incorporation of
H2O2 onto a cyclohexane-related substrate that is structu-
rallycomplexenough toserve asanadvancedprecursor for
QHS has never been achieved to date.
Hydrogen peroxide (H2O2) is an apparently exploitable
source for peroxy bonds, and it has been employed7À10 in
(3) Total synthesis of QHS: (a) Schimid, G.; Hofheinz, W. J. Am.
Chem. Soc. 1983, 105, 624–625. (b) Xu, X. X.; Zhu, J.; Huang, D. Z.;
Zhou, W. S. Tetrahedron 1986, 42, 819–828. (c) Avery, M. A.; Chong,
W. K. M.; White, C. J. J. Am. Chem. Soc. 1992, 114, 974–979. (d) Avery,
M. A.; White, C. J.; Chong, W. K. M. Tetrahedron Lett. 1987, 28, 4629–
4632. (e) Liu, H. J.; Yeh, W. L.; Chew, S. Y. Tetrahedron Lett. 1993, 34,
4435–4438. (f) Constantino, M. G.; Beltrame, M., Jr.; da Silva, G. V. J.
Synth. Commun. 1996, 26, 321–329. (g) Yadav, J. S.; Babu, R. S.; Sabitha,
G. Tetrahedron Lett. 2003, 44, 387–389. (h) Yadav, J. S.; Thirupathaiah, B.;
Srihari, P. Tetrahedron 2010, 66, 2005–2009. For a review, see: (i) Zhou,
W.-S.; Xu, X.-X. Acc. Chem. Res. 1994, 27, 211–216.
Scheme 1. Informative Model Reactions
(4) Semisynthesis of QHS: (a) Roth, R. J.; Acton, N. J. Nat. Prod.
1989, 52, 1183–1185. (b) Ye, B.; Wu, Y.-L. Chem. Commun. 1990, 726–
727. (c) Acton, N.; Roth, R. J. J. Org. Chem. 1992, 57, 3610–3614. (d)
Vonwiller, S. C.; Warner, J. A.; Mann, S. T.; Haynes, R. K. J. Am. Chem.
Soc. 1995, 117, 11098–11105. (e) Nowak, D. M.; Lansbury, P. T.
Tetrahedron 1998, 54, 319–336. (f) Sy, L.-K.; Brown, G. D. Tetrahedron
2002, 58, 897–908.
(5) Synthesis of simpler trioxanes closely related to QHS: (a) Jefford,
C. W.; Velarde, J. A.; Bernardinelli, G.; Bray, D. H.; Warhurst, D. C.;
Milhous, W. K. Helv. Chim. Acta 1993, 76, 2775–2788. (b) Posner, G. H.;
Oh, C. H. J. Am. Chem. Soc. 1992, 114, 8328–8329. (c) Posner, G. H.;
Oh, C. H.; Gerena, L.; Milhous, W. K. Heteroat. Chem. 1995, 6, 105–
116. (d) Jung, M.; Li, X.; Bustos, D. A.; ElSohly, H. N.; McChesney,
J. D. Tetrahedron Lett. 1989, 30, 5973–5976. (e) Jung, M.; Li, X.; Bustos,
D. A.; ElSohly, H. N.; McChesney, J. D.; Milhous, W. K. J. Med. Chem.
1990, 33, 1516–1518. (f) Haraldson, C. A.; Karle, J. M.; Freeman, S. G.;
Duvadie, R. K.; Avery, M. A. Bioorg. Med. Chem. Lett. 1997, 7, 2357–
2362. (g) Avery, M. A.; Chong, W. K. M.; Detre, G. Tetrahedron Lett.
1990, 31, 1799–1802.
(6) (a) Corey, E. J.; Mehrotra, M. M.; Khan, A. U. J. Am. Chem. Soc.
1986, 108, 2472–2473. (b) Posner, G. H.; Webb, K. S.; Nelson, W. M.;
Kishimoto, T.; Seliger, H. J. Org. Chem. 1989, 54, 3252–3254.
(7) (a) Dong, Y.; Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.;
Vennerstrom, J. L. J. Med. Chem. 1999, 42, 1477–1480. (b) Howarth,
J.; Wilson, D. Bioorg. Med. Chem. Lett. 2003, 13, 2013–2015.(c)
Kawanishi, M.; Kotoku, N.; Itagaki, S.; Horiib, T.; Kobayashi, M.
Bioorg. Med. Chem. 2004, 12, 5297–5307. (d) Terent’ev, A. O.; Platonov,
M. M.; Ogibin, Y. N.; Nikishin, G. I. Synth. Commun. 2007, 37, 1281–
1287. (e) Das, B.; Veeranjaneyulu, B.; Krishnaiah, M.; Balasubrama-
nyam, P. J. Mol. Catal. A 2008, 284, 116–119. (f) Ghorai, P.; Dussault,
P. H. Org. Lett. 2008, 10, 4577–4579. (g) Zmitek, K.; Zupan, M.;
Stavber, S.; Iskra, J. Org. Lett. 2006, 8, 2491–2494. (h) Ramirez, A.;
Woerpel, K. A. Org. Lett. 2005, 7, 4617–4620. (i) Terent’ev, A. O.;
Kutkin, A. V.; Platonov, M. M.; Ogibin, Y. N.; Nikishin, G. I. Tetra-
hedron Lett. 2003, 44, 7359–7363. (j) Ramirez, A. P.; Thomas, A. M.;
Woerpel, K. A. Org. Lett. 2009, 11, 507–510. (k) Ellis, G. L.; et al.
J. Med. Chem. 2008, 51, 2170–2177. (l) Li, Y.; Hao, H.-D.; Zhang, Q.;
Wu, Y.-K. Org. Lett. 2009, 11, 1615–1618.
(8) (a) Caglioti, L.; Gasparrini, F.; Palmieri, G. Tetrahedron Lett.
1976, 17, 3987–3988. (b) Caglioti, L.; Gasparrini, F.; Palmieri, G.
Tetrahedron 1978, 34, 135–139. (c) Casteel, D. A.; Jung, K.-E. J. Chem.
Soc., Perkin Trans. 1 1991, 2597–2598. (d) Casteel, D. A.; Jung, K. E.;
Gerema, L.; Milhous, W. Bioorg. Med. Chem. Lett. 1992, 2, 623–626.
(e) Kim, H.-S.; Begum, K.; Ogura, N.; Wataya, Y.; Tokuyasu, T.;
Masuyama, A.; Nojima, M.; McCullough, K. J. J. Med. Chem. 2002,
45, 4732–4736.
During our study on synthesis of organic peroxides using
H2O2 as the source of peroxy bonds, we observed that a
molybdenum species (212) prepared from Na2MoO4 and
glycine could effectively catalyze the perhydrolysis of the
epoxy ring in, for instance, compound 3 (a mixture of the
cis/trans isomers) but did not affect the ketal functionality
in the side chain to any significant extent (Scheme 1). And
the resultant β-hydroxyhydroperoxide 4 could be readily
converted to the corresponding trioxane 513 by treatment
with an acid. As never before had a trioxane so closely
related to QHS been accessed so easily, this result naturally
inspired us to envisage that the long-standing problem of
attaching a hydroperoxyl group to the C-12a in the QHS
framework might be solved just as well in a similar manner.
(10) (a) Payne, G. B.; Smith, C. W. J. Org. Chem. 1957, 22, 1682–
1685. (b) Mattucci, A. M.; Santambrogio, A. Chem. Commun. 1970,
11987–1199. (c) Adam, W.; Rios, A. Chem. Commun. 1971, 822–823. (d)
Ogata, Y.; Sawaki, Y.; Shimizu, H. J. Org. Chem. 1978, 43, 1760–1763.
(e) Subramanyam, V.; Brizuela, C. L.; Soloway, A. H. Chem. Commun.
1976, 508–509. (f) Tang, Y.; Dong, Y.; Wang, X.; Sriraghavan, K.;
Wood, J. K.; Vennerstrom, J. L. J. Org. Chem. 2005, 70, 5103–5110. (g)
Liu, Y.-H.; Zhang, Z.-H.; Li, T.-S. Synthesis 2008, 3314–3318. (h) Li, Y.;
Hao, H.-D.; Wu, Y.-K. Org. Lett. 2009, 11, 2691–2694.
(9) (a) Bloodworth, A. J.; Bunce, R. J. J. Chem. Soc., Perkin Trans. 1
1972, 2787–2792. (b) Bloodworth, A. J.; Shah, A. Chem. Commun. 1991,
947–948. (c) Bloodworth, A. J.; Bothwell, B. D.; Collins, A. N.; Maid-
well, N. L. Tetrahedron Lett. 1996, 37, 1885–1888. (d) Jefford, C. W.;
Deheza, M. F. Heterocycles 1999, 50, 1025–1031.
Org. Lett., Vol. 13, No. 16, 2011
4213