C O M M U N I C A T I O N S
Table 2. Direct Mannich-type Reaction with Various N-Dpp Imines
In summary, we developed a highly enantio- and diastereo-
selective direct catalytic asymmetric Mannich-type reaction to
provide anti-amino alcohols (yield up to 99%, dr up to >98/2, ee
up to >99.5%). The process worked well with from as little as
0.25 to 1 mol % of catalyst loading. The observed complementary
anti-selectivity, in combination with the facile removal of the Dpp
group, makes the present reaction synthetically useful. Detailed
mechanistic studies of the present reaction, especially to clarify
the origin of the anti-selectivity, are ongoing.
3a
ligand 1
(× mol %) product (°C) (h)
temp time yieldb
drc
ee (%)
entry
R
(%) (anti/syn) (anti)
1
2
3
4
5
6
7
8
9
4-MeC6H4 3a
2-MeC6H4 3b
1
1
1
1
1
1
1
1
1
1
1
1
1
4a -20
4b -20
4c -20
4d -20
4e -20
9
6
6
6
9
4
4
6
7
7
4
7
5
6
98
96/4
98
99
99
99
98
98
98
Acknowledgment. We are thankful for financial support by
RFTF and Grant-in-Aid for Encouragements for Young Scientists
(B) (for S.M.) from JSPS. N.K. thanks JSPS Research Fellowships
for Young Scientists. We thank Prof. S. Kobayashi at the University
of Tokyo for support in the X-ray analysis of 4b.
99 >98/2
C6H5
3c
98
97
96
97
97
97
95
98
98
97
98
96/4
95/5
97/3
97/3
95/5
4-MeOC6H4 3d
4-NO2C6H4 3e
4-ClC6H4
4-BrC6H4
3f
3g
4f
-20
4g -20
4h -20
Supporting Information Available: Experimental procedures,
characterization of the products, determination of absolute and relative
configurations of the products, and X-ray data of 4b (CIF and PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
1-naphthyl 3h
2-naphthyl 3i
98/2 >99.5
94/6 99
4i
4j
-20
-20
10 2-furyl
11 (E)-cinnam 3k
12 3k
13 cyclo-propyl 3l
3j
96/4 >99.5
76/24 >99.5
81/19 >99.5
4k -20
4k -30
4l
-30
80/20
99
99
14d 2-MeC6H4 3b 0.25
4b -20
99 >98/2
References
(1) For reviews on asymmetric synthesis of vicinalamino alcohols, see: (a)
Bergmeire, S. C. Tetrahedron 2000, 56, 2561. (b) Kolb, H. C.; Sharpless,
K. B. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C.,
Eds.; Wiley-VCH: Weinheim, 1998; p 243.
a 2 equiv of 2 was used. For less soluble imines, THF/CH2Cl2 mixed
solvent was used. See Supporting Information. b Isolated yield. c Determined
1
by the H NMR of the crude mixture. d 1.28 g of 3b was used.
(2) For reviews on catalytic asymmetric Mannich-type Reaction, see: (a)
Denmark, S. E.; Nicaise, O. J.-C. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
p 954. (b) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069. (c)
Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(3) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431.
(4) Trost, B. M. Science 1991, 254, 1471.
(5) (a) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc.
2002, 124, 827. (b) List, B. J. Am. Chem. Soc. 2000, 122, 9336.
(6) Co´rdova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C. F., III. J.
Am. Chem. Soc. 2002, 124, 1842.
(7) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338.
(8) For other examples of direct catalytic asymmetric Mannich reaction using
unmodified ketone and/or aldehyde as donors, see: (a) Yamasaki, S.; Iida,
T.; Shibasaki, M. Tetrahedron Lett. 1999, 40, 307. (b) Notz, W.; Sakthivel,
K.; Bui, T.; Zhong, G.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42,
199. (c) Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2001, 40, 2995. (d) Co´rdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz,
W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866. (e) Co´rdova,
A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749.
(9) For the synthesis of linked-BINOL 1, see: (a) Matsunaga, S.; Das, J.;
Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki,
M. J. Am. Chem. Soc. 2000, 122, 2252. (b) Matsunaga, S.; Ohshima, T.;
Shibasaki, M. AdV. Synth. Catal. 2002, 344, 4. Linked-BINOL is also
commercially available from Wako Pure Chemical Industries, Ltd. Catalog
No. for (S,S)-1: No. 152-02431.
Figure 2. Working transition state model to afford anti-4 and X-ray
structure of anti-4b.
Scheme 1. Transformation of Mannich Adducta
(10) (a) Kumagai, N.; Matsunaga, S.; Kinoshita, T.; Harada, S.; Okada, S.;
Sakamoto, S.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2003,
125, 2169. (b) Harada, S.; Kumagai, N.; Kinoshita, T.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2582. (c) Kumagai, N.;
Matsunaga, S.; Shibasaki, M. Org. Lett. 2001, 3, 4251. (d) Kumagai, N.;
Matsunaga, S.; Yoshikawa, N.; Ohshima, T.; Shibasaki, M. Org. Lett.
2001, 3, 1539. (e) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll,
G.; Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123,
2466.
a (i) Concentrated HCl(aq)/THF, room temperature, 1 h; (ii) triphosgene,
pyridine, CH2Cl2, -78 °C, 0.5 h, yield 84% (two steps); (iii) mCPBA,
Cl(CH2)2Cl, 60 °C, 3 h, yield 88%.
(11) Determined by NOE enhancement of cyclic carbamate synthesized from
4a.
in high yield. As shown in Scheme 1, 4b was readily converted to
cyclic carbamate 5b in 84% yield (two steps) after removal of the
N-Dpp group under acidic conditions,13 followed by treatment with
triphosgene. Baeyer-Villiger oxidation of 5b proceeded with
mCPBA to afford ester 6b in 88% yield without any epimerization,
as confirmed by NOE.
(12) The absolute configuration of 4b was determined by Mosher’s method.
Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. The relative
configuration of 4b was determined by X-ray analysis (see Figure 2).
(13) Ramage, R.; Hopton, D.; Parrott, M. J. J. Chem. Soc., Perkin Trans. 1
1984, 1357.
JA034787F
9
J. AM. CHEM. SOC. VOL. 125, NO. 16, 2003 4713