10.1002/adsc.201801198
Advanced Synthesis & Catalysis
IrIV.[11] Then, iminyl radical I triggers a 1,5-hydrogen
atom transfer to give the C-centered radical II. The
radical II attacks the C=C bond of styrene 2a
regioselectively to furnish the benzyl radial III,
which is oxidized by IrIV to give the carbocation
intermediate IV and regenerates the photocatalyst IrIII.
Finally, nucleophilic attack of H2O onto the cation IV
followed by hydrolysis leads to the γ-
hydroxyalkylated ketone 3a. Finally, we also
determined a quantum yield of 0.13 for the reaction.
The low quantum yield and an on/off studies were
consistent with the proposed absence of a chain
process (For details, see the Supporting
Information).[11c]
In summary, we have developed the first visible-
light driven three-component γ-hydroxyalkylation of
ketones under concise, redox neutral conditions. In
this protocol, tandem iminyl radical-triggered 1,5-
HAT and subsequent oxyalkylation of unactivated
alkenes enabled the controlled γ-C(sp3)-H bonds
functionalization of ketones. Besides water, simple
alcohols were also efficient nucleophiles, leading to
the corresponding γ-carboetherification of ketones in
good yields. Further studies to explore new remote
C(sp3)-H bond functionalization reactions by merging
radical chemistry are currently underway in our
laboratory.
c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A.
Ellman, Acc. Chem. Res. 2012, 45, 814-825; d) G.
Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52,
11726-11743; Angew. Chem. 2013, 125, 11942-11959;
e) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong,
Chem. Soc. Rev. 2015, 44, 7764-7786; f) J. He, M.
Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev.
2017, 117, 8754-8786.
[2] a) A.-F. Voica, A. Mendoza, W. R. Gutekunst, J. O.
Fraga, P. S. Baran, Nat. Chem. 2012, 4, 629-635; b) M.
Nechab, S. Mondal, M. P. Bertrand, Chem. Eur. J.
2014, 20, 16034-16059; c) K. A. Hollister, E. S.
Conner, M. L. Spell, K. Deveaux, L. Maneval, M. W.
Beal, J. R. Ragains, Angew. Chem. Int. Ed. 2015, 54,
7837-7841; Angew. Chem. 2015, 127, 7948-7952; d) M.
Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895-
2903; e) M. Parasram, P. Chuentragool, Y. Wang, Y.
Shi, V. Gevorgyan, J. Am. Chem. Soc. 2017, 139,
14857-14860.
[3] a) P. Yu, J.-S. Lin, L. Li, S.-C. Zheng, Y.-P. Xiong, L.-
J. Zhao, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2014,
53, 11890-11894; Angew. Chem. 2014, 126, 12084-
12088; b) L. Huang, J.-S. Lin, B. Tan, X.-Y. Liu, ACS
Catal. 2015, 5, 2826-2831; c) J.-Q. Chen, Y.-L. Wei,
G.-Q. Xu, Y.-M. Liang, P.-F. Xu, Chem. Commun.
2016, 52, 6455-6458; d) M. Parasram, P. Chuentragool,
D. Sarkar, V. Gevorgyan, J. Am. Chem. Soc. 2016, 138,
6340-6343; e) S. Du, E. A. Kimball, J. R. Ragains, Org.
Lett. 2017, 19, 5553-5556; f) X. Nie, C. Cheng, G. Zhu,
Angew. Chem. Int. Ed. 2017, 56, 1898-1902; Angew.
Chem. 2017, 129, 1924-1928.
Experimental Section
General procedure for iminyl radical-mediated controlled
hydroxyalkylation of remote C(sp3)-H bond: An oven-
dried 10 mL reaction tube equipped with a magnetic stir
bar was charged with oximes 1 (0.2 mmol, 1.0 equiv), fac-
[Ir(ppy)3] (0.004 mmol, 0.02 equiv), then the tube was
evacuated and backfilled with nitrogen (three times).
Subsequently, alkene (0.4 mmol, 2.0 equiv), 2.0 mL of
MeCN and 0.36 mL of distilled water were injected into
the tube by syringe under nitrogen atmosphere. The
reaction mixture was stirred under the irradiation of a 30
W Blue LEDs at room temperature for 24 h. After reaction
completed, the mixture was quenched with brine and
extracted with ethyl acetate (3 x 10 mL). The combined
organic extracts were washed with brine (10 mL), dried
over Na2SO4 and concentrated in vacuo. Purification of the
crude product by flash chromatography on silica gel
(petroleum ether/ethyl acetate 5:1 to 2:1) to give the
corresponding products 3 or 4 in yields list in Table 2 and
Table 3.
[4] a) D. H. R. Barton, J. M. Beaton, J. Am. Chem. Soc.
1960, 82, 2640-2641; b) A. Martín, I. P. Martín, L. M.
Quintanal, E. Suárez, Tetrahedron Lett. 2008, 49,
5179-5181; c) H. Zhu, J. C. T. Leung, G. M. Sammis, J.
Org. Chem. 2015, 80, 965-979; d) C. Wang, K. Harms,
E. Meggers, Angew. Chem. Int. Ed. 2016, 55, 13495-
13498; Angew. Chem. 2016, 128, 13693-13696; e) J.
Zhang, Y. Li, F. Zhang, C. Hu, Y. Chen, Angew. Chem.
Int. Ed. 2016, 55, 1872-1875; Angew. Chem. 2016, 128,
1904-1907; f) A. Hu, J.-J. Guo, H. Pan, H. Tang, Z.
Gao, Z. Zuo, J. Am. Chem. Soc. 2018, 140, 1612-1616;
g) Y. Li, J. Zhang, D. Li, Y. Chen, Org. Lett. 2018, 20,
3296-3299; h) X. Wu, M. Wang, L. Huan, D. Wang, J.
Wang, C. Zhu, Angew. Chem. Int. Ed. 2018, 57, 1640-
1644; Angew. Chem. 2018, 130, 1656-1660.
Acknowledgements
[5] For representative examples of iminyl radical-mediated
1,5-HAT reactions, see: a) A. R. Forrester, M. Gill, R.
H. Thomson, J. Chem. Soc., Chem. Commun. 1976,
677−678; b) W. Shu, C. Nevado, Angew. Chem. Int. Ed.
2017, 56, 1881-1884; Angew. Chem. 2017, 129, 1907-
1910; c) J. Li, P. Zhang, M. Jiang, H. Yang, Y. Zhao, H.
Fu, Org. Lett. 2017, 19, 1994-1997; d) E. M. Dauncey,
S. P. Morcillo, J. J. Douglas, N. S. Sheikh, D. Leonori,
Angew. Chem. Int. Ed. 2018, 57, 744-748; Angew.
Chem. 2018, 130, 752-756; e) H. Jiang, A. Studer,
Angew. Chem. Int. Ed. 2018, 57, 1692-1696; Angew.
Chem. 2018, 130, 1708-1712. For representative
examples of amidyl radical-mediated 1,5-HAT
reactions, see: f) A. W. Hofmann, Ber. Dtsch. Chem.
Financial support from the Natural Science Basic Research Plan
in Shaanxi Province of China (No. 2016JZ002), the Fundamental
Research Funds of the Central Universities (No. zrzd2017001,
xjj2016056 and 1191329724) is greatly appreciated. We also
thank Miss Lu at Instrument Analysis Center of Xi’an Jiaotong
University for their assistance with HRMS analysis.
References
[1] For selected reviews, see: a) T. W. Lyons, M. S.
Sanford, Chem. Rev. 2010, 110, 1147-1169; b) T.
Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011,
50, 3362-3371; Angew. Chem. 2011, 123, 3422-3431;
4
This article is protected by copyright. All rights reserved.