ZnII–2,2Ј:6Ј,2ЈЈ-Terpyridine-Based Complex
Manez, M. A. Miranda, J. Soto, Angew. Chem. Int. Ed. 2001,
40, 2640; c) X. Zhao, Y. Liu, K. S. Schanze, Chem. Commun.
2007, 2914; d) T. Romero, A. Caballero, A. Tarraga, P. Molina,
Org. Lett. 2009, 5, 3466; e) S. K. Kim, N. J. Singh, J. Kwon,
I. C. Hwang, S. J. Park, K. S. Kimb, J. Yoon, Tetrahedron 2006,
62, 6065.
H, ArH), 5.21 (s, 2 H, –CH2), 2.41 (s, 3 H, –CH3) ppm. FTIR
(KBr): νmax = 3051, 2924, 1727, 1611, 1387, 1266, 1145, 1069, 835,
˜
789 cm–1. ESI-Ms: (m/z) = 498.48 (M+, 15%), 521.45 (M+ + Na+,
100%). C32H23N3O3 (497.55): calcd. C 77.25, H 4.66, N 8.45; found
C 77.3, H 4.7, N 8.4.
[4]
L1Zn: L1 was found to have a limited solubility in methanol. Thus,
L1 (0.10 g, 0.201 mmol) was dissolved in a minimum volume of
CHCl3 (ca. 5 mL). Methanol (30 mL) was then added to this solu-
tion. Zn(ClO4)2·6H2O (0.075 g, 0.301 mmol), dissolved in water
(5 ml), was added to this in a dropwise manner and the reaction
mixture was allowed to stir at room temperature for 24 h. The de-
sired compound was then allowed to precipitate in a pure form by
slow evaporation of the solvent at room temperature. The precipi-
tate thus obtained was filtered, washed with cold water and dried
over P2O5; yield 0.107 g, 70%. 1H NMR (200 MHz, CD3OD +
D2O, 25 °C, TMS): δ = 9.03 (s, 2 H, ArH), 8.82 (d, J = 7.8 Hz, 2
H, ArH), 8.24–8.16 (m, 4 H, ArH), 7.97 (m, 2 H, ArH), 7.88–7.79
(m, 4 H, ArH), 7.69 (d, J = 8.6 Hz, 1 H, ArH), 7.18 (d, J = 6.4 Hz,
1 H, ArH), 6.98 (s, 1 H, ArH), 6.62 (s, 1 H, ArH), 5.37 (s, 2 H,
a) C. Marquez, U. Pischel, W. M. Nau, Org. Lett. 2003, 5, 3911;
b) M. K. Coggins, A. M. Parker, A. Mangalum, G. A. Galda-
mez, R. C. Smith, Eur. J. Org. Chem. 2009, 343; c) A. Ojida,
Y. Mito-oka, M. Inoue, I. Hamachi, J. Am. Chem. Soc. 2002,
124, 6256; d) A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, J.
Am. Chem. Soc. 2004, 126, 2454; e) T. Gunnlaugsson, A. P.
Davis, J. E. O’Brien, M. Glynn, Org. Lett. 2002, 4, 2249; f) P. P.
Neelakandan, M. Hariharan, D. Ramaiah, Org. Lett. 2005, 7,
5765.
a) P. Nyre´n, Anal. Biochem. 1987, 167, 235; b) T. Tabary, L. J.
Ju, Immunol. Methods 1992, 156, 55; c) D. Mulkerrins, A. D. W.
Dobson, E. Colleran, Environ. Int. 2004, 30, 249.
a) D. J. McCarty, Arthritis Rheum. 1976, 19, 275; b) A. Caswell,
D. F. Guilland-Cumming, P. R. Hearn, M. K. McGuire, R. G.
Russell, Ann. Rheum. Dis. 1983, 42, 27; c) M. Doherty, Ann.
Rheum. Dis. 1983, 42, 38.
[5]
[6]
–CH ), 2.48 (s, 3 H, –CH ) ppm. FTIR (KBr): ν = 3477, 3075,
˜
max
2
3
2338, 1715, 1610, 1476, 1431, 1389, 1266, 1092, 794, 623 cm–1. ESI-
a) H.-W. Rhee, C.-R. Lee, S.-H. Cho, M.-R. Song, M. Cashel,
H. E. Choy, Y.-J. Seok, J.-I. Hong, J. Am. Chem. Soc. 2008,
130, 784; b) H.-W. Rhee, H.-Y. Choi, K. Han, J.-I. Hong, J.
Am. Chem. Soc. 2007, 129, 4524.
M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, P.
Nyrén, Anal. Biochem. 1996, 242, 84.
[7]
Ms: (m/z) = 660 ([L1Zn ClO4]+, 100%), 836 {[L1·Zn (ClO4)2
+
2H2O + K+], 20%}. {[L1Zn (H2O)2](ClO4)2}; C32H27Cl2N3O13Zn
(797.86): calcd. C 48.17, H 3.41, N 5.27; found C 48.1, H 3.4, N
5.1.
[8]
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis of precursors and intermediates, various absorption,
emission and excitation spectra, ESI-Ms spectra of L1Zn, frontier
orbitals for L1Zn–PPi and time resolved emission data.
[9]
S. Xu, M. He, H. Yu, X. Cai, X. Tan, B. Lu, B. Shu, Anal.
Biochem. 2001, 299, 188.
[10]
a) D. H. Lee, J. H. Im, S. U. Son, Y. K. Chung, J.-I. Hong, J.
Am. Chem. Soc. 2003, 125, 7752; b) X. Chen, M. J. Jou, J.
Yoon, Org. Lett. 2009, 11, 2181; c) H. N. Lee, Z. Xu, S. Kyung,
K. Kim, M. K. Swamy, Y. Kim, S.-J. Kim, J. Yoon, J. Am.
Chem. Soc. 2007, 129, 3828; d) A. J. Moro, P. J. Cywinski, S.
Korsten, G. J. Mohr, Chem. Commun. 2010, 46, 1085; e) Z.
Kejík, K. Záruba, D. Michalík, J. Ebek, J. Dian, S. Pataridis,
K. Volka, V. Král, Chem. Commun. 2006, 1533; f) B. A. Smith,
W. J. Akers, W. M. Leevy, A. J. Lampkins, S. Xiao, W. Wolter,
M. A. Suckow, S. Achilefu, B. D. Smith, J. Am. Chem. Soc.
2010, 132, 67, and references cited therein; g) W. M. Leevy,
S. T. Gammon, H. Jiang, D. J. Maxwell, E. N. Jackson, M.
Marquez, D. P. Worms, B. D. Smith, J. Am. Chem. Soc. 2006,
128, 16476; h) D. H. Lee, S. Y. Kim, J. I. Hong, Tetrahedron
Lett. 2007, 48, 4477; i) H. N. Lee, K. M. K. Swamy, S. K. Kim,
J. Y. Kwon, Y. Kim, S. J. Kim, Y. J. Yoon, J. Yoon, Org. Lett.
2007, 9, 243; j) H. K. Cho, D. H. Lee, J. I. Hong, Chem. Com-
mun. 2005, 1690; k) K. M. K. Swamy, S. Y. Kwon, H. N. Lee,
S. M. S. Kumar, J. S. Kim, J. Yoon, Tetrahedron Lett. 2007, 48,
8683.
a) D. H. Lee, S. Y. Kim, J.-I. Hong, Angew. Chem. Int. Ed.
2004, 43, 4777; b) M. S. Han, D. H. Kim, Angew. Chem. Int.
Ed. 2002, 41, 3809; c) A. D. Jose, S. Mishra, A. Ghosh, A.
Shrivastav, S. K. Mishra, A. Das, Org. Lett. 2007, 9, 1979; d)
A. Ghosh, A. Shrivastav, A. D. Jose, S. K. Mishra, C. K. Chan-
drakanth, S. Mishra, A. Das, Anal. Chem. 2008, 80, 5312; e)
A. Ojida, S. Park, Y. Mito-oka, I. Hamachi, Tetrahedron Lett.
2002, 43, 6193; f) J. Wongkongkatep, Y. Miyahara, A. Ojida, I.
Hamachi, Angew. Chem. Int. Ed. 2006, 45, 665; g) A. Ojida, I.
Takashima, T. Kohira, H. Nonaka, I. Hamachi, J. Am. Chem.
Soc. 2008, 130, 12095, and references cited therein; h) D. H.
Lee, J. H. Im, S. U. Son, Y. K. Chung, J.-I. Hong, J. Am. Chem.
Soc. 2003, 125, 7752; i) X. Haung, Z. Guo, W. Zhu, Y. Xie, H.
Tian, Chem. Commun. 2008, 5143; j) M. J. Kim, K. M. K.
Swamy, K. M. Lee, A. R. Jagdale, Y. Kim, S. J. Kim, K. H.
Yoo, J. Yoon, Chem. Commun. 2009, 7215.
Acknowledgments
Authors thank the Department of Science and Technology and
Council of Scientific and Industrial Research (CSIR), India for
supporting this research. P. D. and A. G. thank the CSIR for a
Sr. Research Fellowship. M. K. K. thanks the University Grants
Commission (UGC), New Delhi for a Sr. Research Fellowship.
V. R. thanks the Department of Bio Technology (DBT), India for
a research fellowship. A. D. thanks Dr. P. K. Ghosh, Director,
CSMCRI for his encouragement.
[1] a) G. V. Zyryanov, M. A. Palacios, P. Anzenbacher Jr., Angew.
Chem. Int. Ed. 2007, 46, 7849; b) M. W. Hosseini, A.
John Blacker, J. M. Lehn, J. Am. Chem. Soc. 1990, 112, 3896;
c) W. N. Lipscomb, N. Starter, Chem. Rev. 1996, 96, 2375; d)
J. M. Berg, L. Stryer, J. L. Tymoczko, Biochemistry 5th Ed.,
W. H. Freeman, New York 2002; e) J. S. Seo, N. D. Sung, R. C.
Hynes, J. Chin, Inorg. Chem. 1996, 35, 7472; f) Z. Xu, N. J.
Singh, J. Lim, J. Pan, H. N. Kim, S. Park, K. S. Kim, J. Yoon,
J. Am. Chem. Soc. 2009, 131, 15528.
[2] a) R. Martinez-Manez, F. Sancenon, Chem. Rev. 2003, 103,
4419; b) S. K. Kim, D. H. Lee, J. Hong, J. Yoon, Acc. Chem.
Res. Acc. Chem. Research. 2009, 42, 23; c) G. Ambrosi, M.
Formica, V. Fusi, A. Guerri, E. Macedi, M. Micheloni, P. Pa-
oli, R. Pontellini, P. Rossi, Inorg. Chem. 2009, 48, 5901; d) E.
Climent, R. Casasus, M. D. Marcos, R. Martinez-Manez, F.
Sancenon, J. Soto, Dalton Trans. 2009, 4806; e) E. A. Katayev,
Y. A. Ustynyuk, J. L. Sessler, Coord. Chem. Rev. 2006, 250,
3004; f) E. O’Neil, B. D. Smith, Coord. Chem. Rev. 2006, 250,
3068; g) P. Molenveld, J. F. J. Engbersen, D. N. Reinhoudt,
Chem. Soc. Rev. 2000, 29, 75.
[11]
[12]
[3] a) A. D. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Radamacher, T. E. Roice, Chem.
Rev. 1997, 36, 2081; b) F. Sancenon, A. B. Descalzo, M. M.
a) D. A. Jose, S. Stadlbauer, B. Kçnig, Chem. Eur. J. 2009, 15,
7404; b) S. Aoki, M. Zulkefeli, M. Shiro, M. Kohsako, K.
Takeda, E. Kimura, J. Am. Chem. Soc. 2005, 127, 9129; c) S.
Eur. J. Inorg. Chem. 2011, 3050–3058
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3057