DIASTEREOISOMERS OF CYCLIC GUANOSINE MONO-ADDUCTS
493
10. Loeppky RN, Fuchs A, Janzowski C, Humberd C, Goelzer P, Schnei-
der H, Eisenbrand G. Probing the mechanism of the carcinogenic acti-
vation of N-nitrosodiethanolamine with deuterium isotope effects: in
vivo induction of DNA single-strand breaks and related in vitro assays.
Chem Res Toxicol 1998;11:1556–1566.
11. Chung FL, Hecht SS. Formation of the cyclic 1,N2-glyoxal-deoxygua-
nosine adduct upon reaction of N-nitroso-2-hydroxymorpholine with
deoxyguanosine. Carcinogenesis 1985;6:1671–1673.
12. Dorado L, Montoya MR, Mellado JMR. A contribution to the study of
the structure-mutagenicity relationship for alpha-dicarbonyl com-
pounds using the Ames test. Mutat Res 1992;269:301–306.
13. Kielhorn J, Pohlenz-Michel C, Schmidt S, Mangelsdorf I. Glyoxal. In:
Concise international chemical assessment document 57. Geneva:
World Health Organization Press; 2004.
14. Kalapos MP. Methylglyoxal toxicity in mammals. Toxicol Lett
1994;73:3–24.
15. Klamerth OL. Influence of glyoxal on cell function. Biochim Biophys
Acta 1968;155:271–279.
16. Murata-Kamiya N, Kamiya H, Kaji H, Kasai H. Glyoxal, a major prod-
uct of DNA oxidation, induces mutations at G:C sites on a shuttle vec-
tor plasmid replicated in mammalian cells. Nucleic Acids Res
1997;25:1897–1902.
17. Murata-Kamiya N, Kaji H, Kasai H. Deficient nucleotide excision
repair increases base-pair substitutions but decreases TGGC frame-
shifts induced by methylglyoxal in Escherichia coli. Mutat Res Genet
Toxicol Environ Mutagen 1999;442:19–28.
18. Marnett LJ, Basu AK, O’Hara SM. The role of cyclic nucleic acid
adducts in the mutational specificity of malondialdehyde and beta-sub-
stituted acroleins in Salmonella. IARC Sci Publ 1986;70:175–183.
19. Olsen R, Molander P, Ovrebo S, Ellingsen DG, Thorud S, Thomassen
Y, Lundanes E, Greibrokk T, Backman J, Sjoholm R, Kronberg L.
Reaction of glyoxal with 20-deoxyguanosine, 20-deoxyadenosine, 20-
deoxycytidine, cytidine, thymidine, and calf thymus DNA: identifica-
tion of DNA adducts. Chem Res Toxicol 2005;18:730–739.
Fig. 6. Possible mechanisms for the racemization of G-g and G-mg.
Trans (a) and cis (b) structures have different reaction pathways.
20. Awada M, Dedon PC. Formation of the 1,N2-glyoxal adduct of deoxy-
guanosine by phosphoglycolaldehyde, a product of 30-deoxyribose oxi-
dation in DNA. Chem Res Toxicol 2001;14:1247–1253.
G-mg, dG-c diastereoisomers and their structure projec-
tions in the octant coordinates, calculation of the racemiza-
tion rate constants of cyclic G-g adducts.
21. Shapiro R, Hachmann J. The reaction of guanine derivatives with 1,2-
dicarbonyl compounds. Biochemistry 1966;5:2799–2807.
22. Shapiro R, Cohen BI, Shiuey SJ, Maurer H. On the reaction of gua-
nine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of
the acylguanines. A new synthesis of N2-alkylguanines. Biochemistry
1969;8:238–245.
LITERATURE CITED
1. Kalapos MP. Methylglyoxal in living organisms chemistry, biochemistry,
toxicology and biological implications. Toxicol Lett 1999;110:145–175.
23. Ruohola AM, Koissi N, Andersson S, Lepisto I, Neuvonen K, Mikkola
S, Lonnberg H. Reactions of 9-substituted guanines with bromomalon-
dialdehyde in aqueous solution predominantly yield glyoxal-derived
adducts. Org Biomol Chem 2004;2:1943–1950.
2. Schauenstein E, Esterbauer H, Zollner H. Aldehydes in biological sys-
tems. Their natural occurrence and biological activities. Great Britain:
Pion Ltd; 1977.205p.
24. Czarnik AW, Leonard NJ. Unequivocal assignment of the skeletal struc-
ture of the guanine-glyoxal adduct. J Org Chem 1980;45:3514–3517.
3. Loidl-Stahlhofen A, Spiteller G. Alpha-hydroxyaldehydes, products of
lipid peroxidation. Biochim Biophys Acta 1994;1211:156–160.
25. Shapiro R, Cohen BI, Clagett DC. Specific acylation of the guanine
residues of ribonucleic acid. J Biol Chem 1970;245:2633–2639.
4. Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW.
Mechanism of autoxidative glycosylation: identification of glyoxal and
arabinose as intermediates in the autoxidative modification of proteins
by glucose. Biochemistry 1995;34:3702–3709.
26. Pluskota-Karwatka D, Pawlowicz AJ, Tomas M, Kronberg L. Forma-
tion of adducts in the reaction of glyoxal with 20-deoxyguanosine and
with calf thymus DNA. Bioorg Chem 2008;36:57–64.
5. Glomb MA, Monnier VM. Mechanism of protein modification by gly-
oxal and glycolaldehyde, reactive intermediates of the Maillard reac-
tion. J Biol Chem 1995;270:10017–10026.
27. Vaca CE, Fang JL, Conradi M, Hou SM. Development of a P-32 Postlab-
eling method for the analysis of 20-deoxyguanosine-30-monophosphate
and DNA-adducts of methylglyoxal. Carcinogenesis 1994;15:1887–1894.
6. Murata-Kamiya N, Kamiya H, Iwamoto N, Kasai H. Formation of a mu-
tagen, glyoxal, from DNA treated with oxygen free radicals. Carcino-
genesis 1995;16:2251–2253.
28. Vaca CE, Nilsson JA, Fang JL, Grafstrom RC. Formation of DNA
adducts in human buccal epithelial cells exposed to acetaldehyde and
methylglyoxal in vitro. Chem Biol Interact 1998;108:197–208.
7. Loeppky RN, Cui W, Goelzer P, Park M, Ye Q. Glyoxal-guanine DNA
adducts: detection, stability and formation in vivo from nitrosamines.
IARC Sci Publ 1999;150:155–168.
29. Papoulis A, Alabed Y, Bucala R. Identification of N-2-(1-carboxyethyl)-
guanine (Ceg) as a guanine advanced glycosylation end-product. Bio-
chemistry 1995;34:648–655.
8. Chung FL, Hecht SS, Palladino G. Formation of cyclic nucleic acid
adducts from some simple alpha, beta-unsaturated carbonyl com-
pounds and cyclic nitrosamines. IARC Sci Publ 1986;70:207–225.
30. Frischmann M, Bidmon C, Angerer J, Pischetsrieder M. Identification of
DNA adducts of methylglyoxal. Chem Res Toxicol 2005;18:1586–1592.
9. Whitmore GF, Varghese AJ, Gulyas S. Reaction of 2-nitroimidazole
metabolites with guanine and possible biological consequences. IARC
Sci Publ 1986;70:185–196.
31. Moffitt W, Woodward RB, Moscowitz A, Klyne W, Djerassi C. Struc-
ture and the optical rotaory dispersion of saturate ketones. J Am
Chem Soc 1961;83:4013–4018.
Chirality DOI 10.1002/chir