2740
T. Ohwada et al. / Bioorg. Med. Chem. 19 (2011) 2726–2741
4.3.13. Synthesis of N-nitrosoisoindoline 18
The synthesis of 18 was carried out as described previously
(Ref. 33).
ergy conformation with respect to the two methoxy groups was
used for the DFT calculations.
Benzylamine
Et3N, CHCl3
H2, Pd/C
Ph
Br
Br
MeOH
N
NH
reflux, 10 hr
r.t. 8 hr
45
44
NaNO2
CH3CO2H-H2O
N NO
0°C, 2 hr
18
Isoindoline 45: To a solution of
a,a-dibromo-o-xylene (5.23 g,
Acknowledgments
19.9 mmol) in CHCl3 (15 mL), a solution of triethylamine (6 mL)
in CHCl3 (10 mL) was added at 0 °C over 5 min. To this solution,
benzylamine (2.21 g, 20.6 mmol) in 10 mL of CHCl3 was added
at 0 °C over 5 min. The whole was heated at reflux for 10 h and
the solvent was evaporated to give a residue (44). The N-benzyl
derivative 44 was hydrogenated over 10% Pd–C (420 mg) in meth-
anol (15 mL) for 8 h at ambient temperature. The reaction mix-
ture was filtrated to remove Pd–C and the solvent was
evaporated to give amine derivative 45. 1H NMR (400 MHz,
CDCl3): d 7.43–7.13 (9H, m), 3.91 (4H, s), 3.88 (2H, s). MS
([M+H]+): 210.
N-Nitrosoisoindoline 18: To a solution of isoindoline 45 in a mix-
ture of 10 mL of acetic acid and 20 mL of water, an aqueous solu-
tion of NaNO2 (1.53 g, 22.2 mmol) in 10 mL of water was added
at 0 °C. The whole was stirred for 2 h, then extracted with CH2Cl2,
and the organic layer was washed with 2 N aqueous NaOH, 0.5 N
aqueous HCl, brine, and dried over sodium sulfate. The solvent
was evaporated to give a residue, which was chromatographed
(hexane: AcOEt = 1: 4 to 1: 3) to give 18 as an oil (1.32 g,
This work was supported by a Grant-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science.
Some of the calculations were carried out at the Computer
Center, Institute for Molecular Science at Okazaki, Japan. We
thank the computational facility for generous allotments of
computer time.
References and notes
1. Lee, V. M.; Keefer, L. K.; Archer, M. C. Chem. Res. Toxicol. 1996, 9, 1319.
2. Inami, K.; Ishikawa, S.; Mochizuki, M. Genes Environ. 2009, 31, 97.
3. Mueller, L.; Mauthe, R. J.; Riley, C. M.; Andino, M. M.; De Antonis, D.; Beels, C.;
DeGeorge, J.; De Knaep, A. G. M.; Ellison, D.; Fagerland, J. A.; Frank, R.; Fritschel,
B.; Galloway, S.; Harpur, E.; Humfrey, C. D. N.; Jacks, A. S.; Jagota, N.;
Mackinnon, J.; Mohan, G.; Ness, D. K.; O’Donovan, M. R.; Smith, M. D.;
Vudathala, G.; Yotti, L. Regul. Toxicol. Pharmacol. 2006, 44, 198.
4. Yang, C. S.; Yoo, J. S. H.; Ishizaki, H.; Hong, J. Y. Drug Metab. Rev. 1990, 22, 147.
5. Phillipson, C. E.; Ioannides, C. Carcinogenesis 1984, 5, 1091.
6. Mochizuki, M.; Anjo, T.; Sekiguchi, N.; Ikarashi, A.; Suzuki, A.; Wakabayashi, Y.;
Okada, M. Chem. Pharm. Bull. 1986, 34, 3956.
7. Jarman, M.; Manson, D. Carcinogenesis 1986, 7, 559.
8. Domoradzki, J.; Pegg, A. E.; Dolan, M. E.; Maher, V. M.; McCormick, J. J.
Carcinogenesis 1984, 5, 1641.
9. Kaina, B.; Fritz, G.; Mitra, S.; Coquerelle, T. Carcinogenesis 1991, 12, 1857.
10. Floyd, R. A.; Soong, L. M.; Stuart, M. A.; Reigh, D. L. Photochem. Photobiol. 1978,
28, 857.
8.91 mmol, 45% from
a,a-dibromo-o-xylene). Mp: 85–89 °C
(recrystallized from MeOH, grayish needles). MS ([M+H]+): 149.
1H NMR (400 MHz, CDCl3): d 7.40–7.31 (4H, m), 5.63 (2H, s), 4.90
(2H, s).
N-Nitrosopyrrolidine (19): N-nitrosopyrrolidine (19) was syn-
thesized by nitrosation of pyrrolidine and purified by column-
chromatography as described previously.33 Further purification
was carried out in the present study: the synthesized N-nitroso-
pyrrolidine (19) was dissolved in methanol saturated with
sodium hydroxide and the whole solution was stirred
overnight at room temperature, then purified by extraction
(see Ref. 18d).
11. Voutchkova, A. M.; Ferris, L. A.; Zimmerman, J. B.; Anastas, P. T. Tetrahedron
2010, 66, 1031.
12. Voutchkova, A. M.; Osimitz, T. G.; Anastas, P. T. Chem. Rev. 2010, 110, 5845.
13. Yanagimoto, T.; Toyota, T.; Matsuki, N.; Makino, Y.; Uchiyama, S.; Ohwada, T. J.
Am. Chem. Soc. 2007, 129, 736.
14. Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S. Nat. Rev. Mol.
Cell Biol. 2005, 6, 150.
15. McCann, J.; Choi, E.; Yamasaki, E.; Ames, B. N. Proc. Natl. Acad. Sci. U.S.A. 1975,
72, 5135.
16. Ames, B. N.; McCann, J.; Yamasaki, E. Mutat. Res. 1975, 31, 347.
17. Mortelmans, K.; Zeiger, E. Mutat. Res., Fund. Mol. Mech. Mutagen. 2000, 455,
29.
18. In the metabolism of NDMA, a denitrosation pathway has been also proposed
and this pathway can account for a part of the NDMA metabolism: (a) Kier, L.
E.; Brusick, D. J.; Auletta, A. E.; Vonhalle, E. S.; Brown, M. M.; Simmon, V. F.;
Dunkel, V.; McCann, J.; Mortelmans, K.; Prival, M.; Rao, T. K.; Ray, V. Mutat. Res.
1986, 168, 69; (b) Keefer, L. K.; Anjo, T.; Wade, D.; Wang, T. Y.; Yang, C. S. Cancer
Res. 1987, 47, 447; (c) Streeter, A. J.; Nims, R. W.; Sheffels, P. R.; Heur, Y. H.;
Yang, C. S.; Mico, B. A.; Gombar, C. T.; Keefer, L. K. Cancer Res. 1990, 50, 1144;
(d) Tsutsumi, N.; Inami, K.; Mochizuki, M. Bioorg. Med. Chem. 2010, 18, 8284;
(e) Wink, D. A.; Kasprzak, K. S.; Maragos, C. M.; Elespuru, R. K.; Misra, M.;
Dunams, T. M.; Cebula, T. A.; Koch, W. H.; Andrews, A. W.; Allen, J. S.; Keefer, L.
K. Science 1991, 254, 1001. In this pathway, the formation of nitric oxide (NO),
which may cause lethal cell injury, is possible. While some involvement of this
alternative metabolic pathway of N-nitrosamines cannot be ruled out, the
present observation that most of these bicyclic nitrosamines showed no
cytotoxicity in the presence of S9 mix may exclude a significant contribution of
denitrosation in the present cases.
4.4. Calculations
All conformations of each molecule were optimized in the
Gaussian 03 program42 at the B3LYP/6-31G(d) (method A) or
CBS-Q level (method D) of theory to find the global minimum.
The number of imaginary frequencies confirmed ground states.
Zero-point energy corrections were applied without scaling.
Single-point energies at 273.15 K were obtained by two DFT
methods, R(U)B3LYP/6-311++G(d,p) (method B) and R(U)B3P86/
6-311++G(d,p) (method C) on the basis of the R(U)B3LYP/
6-31G(d)-optimized structures. The lowest-energy structure of
9 with respect to two methoxy groups was obtained with Mac-
roModel 8.1 programs; Monte Carlo (MC) conformational search
was performed using the OPLS-AA force field in the gas phase.
One thousand starting structures were generated. The lowest-en-
19. Rao, T. K.; Cox, J. T.; Allen, B. E.; Epler, J. L.; Lijinsky, W. Mutat. Res. 1981, 89, 35.
20. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. Environ. Mutagen.
1983, 5, 3.
21. Dellarco, V. L.; Prival, M. J. Environ. Mol. Mutagen. 1989, 13, 116.