The Journal of Organic Chemistry
ARTICLE
(9) Noyori, R. Nat. Chem. 2009, 1, 5–6.
oxychloride/phosphine oxide binary system, see: (d) Kazantseva,
M. V.; Timokhin, B. V.; Rokhin, A. V.; Blazhev, D. G.; Golubin, A. I.;
Rybakova, Y. V. Russ. J. Gen. Chem. 2001, 71, 1233–1235.
(22) For a recent creative application of the Appel reaction for
dynamic resolution of P-stereogenic phosphine oxides, see: (a) Enda,
B.; O’Connor, C. T.; Robinson, S. B.; McGarringle, E. M.; O’Mah-
ony, C. P.; Gilheany, D. G. J. Am. Chem. Soc. 2007, 129, 9566–9567.
(b) Kamalraj, V. R.; Kennedy, L.; Gilheany, D. G. Eur. J. Org. Chem.
2010, 5642–5649. For phosphonium-salt mediated halogenation of
alcohols, see: (c) Firouzabadi, H.; Iranpoor, N.; Ebrahimzadeh, F.
Tetrahedron Lett. 2006, 47, 1771–1775. (d) Appel, R. Angew. Chem.,
Int. Ed. 1975, 14, 801–811. (e) Appel, R.; Halstenberg, M. In
Organophosphorus Reagents in Organic Synthesis; Cadogan, J. I. G.,
Ed.; Academic Press: London, 1979; Chapter 9. (f) Castro, B.; Selve,
C. Bull. Soc. Chim. Fr. 1971, 2296–2298. (g) Schweizer, E. E.;
Creasey, W. S.; Light, K. K.; Shaffer, E. T. J. Org. Chem. 1968, 34,
2270–2274. (h) Downie, I. M.; Holmes, J. B.; Kee, J. B. Chem. Ind.
(London) 1966, 900–901. (i) Wiley, G. A.; Hershkowitz, R. L.; Rein,
B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86, 964–965. (j) Trippett,
S. J. Chem. Soc. 1962, 2337–2340. (k) Hoffmann, L.; Horner, L.;
Wippel, H. G.; Michael, D. Chem. Ber. 1962, 95, 523.
(10) For example, the strength of the PdO bond in triphenylpho-
sphine oxide is 128 kcal/mol. For example, in the context of Appel
chlorination, the CꢀCl bond of an alkyl chloride is about 10 kcal/mol
weaker than the CꢀO bond of an aliphatic alcohol. In the context of the
Wittig reaction the CdC bond of an alkene is approximately 30 kcal/
mol weaker than that of an aldehyde. The formation of the PdO bond
provides enthalpic compenzation for this. For a review on the bonding in
phosphines, phosphine oxides and phosphonium ylides, see: Gilheaney,
D. G. Chem. Rev. 1994, 1339–1374.
(11) McGonagle, A. E.; Marsden, S. P.; McKever-Abbas, B. Org. Lett.
2008, 10, 2589.
(12) Monagle, J. J.; Campbell, T. W.; McShane, H. F. J. Am. Chem.
Soc. 1962, 84, 4288.
(13) For the first Wittig reaction catalytic in phosphorus, see:
(a) O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.;
Kunkel, S. R.;Przeworski, K. C.;Chass, C. G. Angew. Chem., Int. Ed. 2009, 48,
6836ꢀ6839. For a review on catalytic olefinations of aldehydes, see: (b)
K€uhn, F. E.; Santos, A. M. Mini-Rev. Org. Chem. 2004, 1, 55–64.
(14) Harris, J. R.; Haynes, M. T., II; Thomas, A. M.; Woerpel, K. A.
J. Org. Chem. 2010, 75, 5083–5091.
(15) For the preliminary communication on catalytic halogenation
under Appel conditions, see: (a) Denton, R. M.; Jie, A.; Adeniran, B.
Chem. Commun. 2010, 46, 3025–3027. For a related 1,2-dichlorination
of epoxides under catalytic Appel conditions, see:Denton, R. M.; Tang,
X.; Przeslak, A. Org. Lett. 2010, 12, 4678–4682.
(16) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manely, J.; Pearlman, B. A.;
Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
(17) For the conversion of alcohols to chlorides using
dichlorodiphenylcyclopropene, see: Kelly, B. D.; Lambert, T. H. J. Am.
Chem. Soc. 2009, 131, 13930–13931.
(18) For the conversion of alcohols to bromides or iodides via an
interesting photoredox catalysis approach, see: (a) Dai, C.; Naraya-
nam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140–145. For
another catalytic system for the chorination of alcohols, see: (b)
Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am. Chem. Soc. 2004,
126, 7186–7187. (c) Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A.
Org. Synth. 2006, 83, 38–44. (d) Yasuda, M.; Shimizu, K.; Yamasaki,
S.; Baba, A. Org. Biomol. Chem. 2008, 6, 2790–2975. For an alter-
native approach to involving catalytic electronic activation of
alcohols, see: (e) Edwards, M. G.; Williams, J. M. J. Angew. Chem.,
Int. Ed. 2002, 41, 4740–4743. (f) Hamid, M. H. S. A.; Slatford, P. A.;
Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555–1575. (g)
Williams, J. M. J. Angew. Chem., Int. Ed. 2002, 41, 4740–4743. (h)
Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.;
Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J. J. Am. Chem. Soc.
2009, 131, 1766–1774.
(23) For reviews on the synthetic utitlity of alkyl chlorides, see: (a)
Larock, R.C. In Comprehensive Organic Transformations, 2nd ed.; John
Wiley & Sons: New York, 1999; pp 689ꢀ702. (b) Bohlmann, R. In
Comprehensive Organic Synthesis; Trost, B., Flemming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 6, pp 203ꢀ223. (c) Hudlicky, M.; Hudlicky, T.
In Chemistry of Functional Groups, Supplement D; Patai, S., Rappoport, Z.,
Eds.; Wiley: New York, 1983; p 1021. (d) Chambers, R. D.; James, S. R. In
Comprehensive Organic Chemistry; Barton, D. H. R., Ollis, W. D., Eds.;
Pergamon Press: Oxford, 1979; Vol. 1, p 493.
(24) For an introduction to isolation and synthesis aspects of
chlorosulfolipids, see: (a) Bedke, D. K.; Vanderwal, D. Nat. Prod. Rep.
2010, 28, 15ꢀ25. For reviews on halogenated natural products, see: (b)
Gribble, G. W. J. Chem. Ed. 2004, 81, 1441ꢀ1449. (c) Gribble, G. Am.
Sci. 2004, 92, 342–349. (d) Gribble, G. W. Acc. Chem. Res. 1998,
31, 141–152. (e) Gribble, G. W. J. Nat. Prod. 1992, 55, 1353–1395.
(25) (a) Norris, J. F.; Taylor, H. B. J. Am. Chem. Soc. 1907,
38, 627–630. (b) Norris, J. F.; Taylor, H. B. J. Am. Chem. Soc. 1924,
46, 753–756.(c) Norris, J. F.; Olmsted, A. W. Organic Synthesis; Wiley:
New York, 1941; Collect. Vol. I, pp 146ꢀ147.
(26) Fuchs, R.; Cole, L. L. Can. J. Chem. 1975, 53, 3620–3621.
(27) For representative examples, see: (a) Nelson, S. D.; Kouzi, S. A.
J. Org. Chem. 1993, 58, 771–773. (b) Falorni, M.; Lardicci, L. J. Org.
Chem. 1986, 51, 5291–5294. (c) Meyers, A. I.; Collington, E. W. J. Org.
Chem. 1971, 36, 3044–3048.
(28) (a) Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2002,
4, 553–555. (b) Gomez, L.; Gellibert, F.; Wagner, A.; Mioskowski, C.
Tetrahedron Lett. 2000, 41, 6049–6052. (c) Benazza, T.; Uzan, R.;
Beaupere, D.; Demailly, G. Tetrahedron Lett. 1992, 33, 4901–4904. (d)
Ireland, R. B.; Norbeck, D. W.; Mandel, G. S.; Mandel, N. S. J. Am. Chem.
Soc. 1985, 107, 3285–3294. (e) Fujisawa, T.; Iida, S.; Sato, T. Chem. Lett.
1984, 1173–1174.
(29) (a) Mukaiyama, T.; Shoda, S. I.; Watanabe, Y. Chem. Lett. 1997,
383–385. (b) Hojo, K.; Mukaiyama, T. Chem. Lett. 1976, 619–622.
(30) Note that the 31P chemical shift of triphenylphosphine oxide
varies in the presence of both Br€onsted and Lewis acids. For example, in
the absence of acid triphenylphosphine oxide resonates at 29 ppm relative
to H3PO4 at 0 ppm. See: (a) Maciel, G. E.; James, R. V. Inorg. Chem. 1964,
3, 1650–1651. (b) Zeldin, M.; Mehta, P.; Vernon, W. D. Inorg. Chem.
1979, 18, 463–466.
(31) Rhoads, S. J.; Michel, R. E. J. Am. Chem. Soc. 1963, 85, 585–591.
(32) Forfull details of theGC conditions, seeSupporting Information.
(33) Cambridge Crystallographic Database deposition number
788124.
(34) (a) Lepore, S. D.; Bhunia, A. K.; Mondal, D.; Cohn, P. C.;
Lefkowitz, C. J. Org. Chem. 2006, 71, 3285–3286. (b) Braddock, D. C.;
Pouwer, R. H.; Burton, J. W.; Broadwith, P. J. Org. Chem. 2009, 74,
6042–6049.
(19) (a) Relles, H. M.; Schluenz, R. W. J. Am. Chem. Soc. 1974,
96, 6469–6475. (b) Senet, J.-P. C. R. Acad. Sci., Ser. IIc:, Chim. 2000,
3, 505–516.(c) Wunsch, G.; Wintersberger, G. Geierhass, G. German
Patent 1247310, 1966, BASF. (d) Appel, R.; Heinzelmann, W. German
Patent 1192205, 1962, BASF.
(20) (a) Yano, T.; Kuroboshi, M.; Tanaka, H. Tetrahedron Lett. 2010,
51, 698–701. (b) Yano, T.; Hoshino, M.; Kuroboshi, M.; Tanaka, H. Synlett
2010, 5, 801–803. (c) Masaki, M.; Fukui, K. Chem. Lett. 1977, 151–152.
(21) Some examples of phosphine oxide-catalyzed chlorination
reactions can be found in the patent literature. For example, thio-
nylchloride can be used as a stoichiometric reagent in conjunction
with catalytic phosphine oxides; see: (a) Rhode, T.; Huttenloch, O.;
Osswald, F. Wissel, K. U.S. Patent App. US 2008/0228016, 2008. In
this work the phosphine oxide most likely catalyzes the decomposi-
tion of the derived chlorosulfinate. Trialkylphosphine oxides catalyze
chlorination of alcohols using phosgene as the stoichiometric
reagent; see: (b) Henklemann, J.; Troetsch-Schaller, I.; Wettling,
T.; Kahl, T. M.; Hupfer, L.; Franzischka, W.; Koehler, H. U.S. Patent
US 5196611, 1993;(c) Dabee, A.; Gauthier, P.; Senet, J. P. U.S. Patent
US 5672770, 1994. For a chlorination using a phosphorus
6766
dx.doi.org/10.1021/jo201085r |J. Org. Chem. 2011, 76, 6749–6767