122
K. Purchartová et al. / Journal of Molecular Catalysis B: Enzymatic 71 (2011) 119–123
Scheme 1.
ester in an ethanolic solution of conc. HCl. This method is, how-
ever, again non-selective and naturally cannot be used for selective
hydrolysis. Better selectivity has been observed during attempts to
remove the TBDMS group (at 23-OH) in the presence of acetates
at the remaining positions of the silybin molecule [25]. The appli-
cation of either an ion exchanger (Dowex 50W-X8) in MeOH or a
Lewis acid (BF3.Et2O) in CHCl3 led to selective hydrolysis of the
TBDMS group together with the acetates at the 5- and 20-OH
groups of the silybin molecule. This observation hints that these
two positions are the most sensitive to acidic hydrolysis. In con-
trast to these chemical methods, the biotransformation method
we have developed selectively cleaves the acetate at 7-OH (par-
tially also at 5-OH). The difference between the result of the acidic
enzyme compared to other positions. Accordingly, existing stud-
ies of regioselective deacylation of simpler flavonoids (quercetin,
morin) reported regioselective deacylation of the 7-OH position of
the flavonoid skeleton [7,10,30].
Czech Republic (OC09045, ME10027), Czech Science Foundation
(P301/11/0767), and Academy of Sciences of the Czech Republic
(AV0Z50200510). Dr. Ladislav Cvak from Galena Teva Co. (Opava,
Czech Republic) is thanked for his kind provision of silybin.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] G. Carrea, S. Riva, Angew. Chem., Int. Ed. 39 (2000) 2227–2254.
[2] B. Danieli, M. Luisetti, G. Sampognaro, G. Carrea, S. Riva, J. Mol. Catal. B: Enzym.
3 (1997) 193–201.
[3] B. Danieli, P. De Bellis, G. Carrea, S. Riva, Helv. Chim. Acta 73 (1990)
1837–1844.
[4] S. Riva, B. Danieli, M. Luisetti, J. Nat. Prod. 59 (1996) 618–621.
[5] L. Chebil, J. Anthoni, C. Humeau, C. Gerardin, J.M. Engasser, M. Ghoul, J. Agric.
Food Chem. 55 (2007) 9496–9502.
[6] J.H. Salem, C. Humeau, I. Chevalot, C. Harscoat-Schiavo, R. Vanderesse, F. Blan-
chard, M. Fick, Process Biochem. 45 (2010) 382–389.
[7] D. Lambusta, G. Nicolosi, A. Patti, C. Sanfilippo, J. Mol. Catal. B: Enzym. 22 (2003)
271–277.
[8] E.B. De Oliveira, C. Humeau, E.R. Maia, L. Chebil, E. Ronat, G. Monard, M.F.
Ruiz-Lopez, M. Ghoul, J.M. Engasser, J. Mol. Catal. B: Enzym. 66 (2010)
325–331.
[9] L. Chebil, C. Humeau, A. Falcimaigne, J.M. Engasser, M. Ghoul, Process Biochem.
41 (2006) 2237–2251.
[10] M. Natoli, G. Nicolosi, M. Piattelli, J. Org. Chem. 57 (1992) 5778–5780.
[11] C. Ruiz, S. Falcocchio, E. Xoxi, L. Villo, G. Nicolosi, F.I.J. Pastor, P. Díaz, L. Saso, J.
Mol. Catal. B: Enzym. 40 (2006) 138–143.
[12] P. Li, P.S. Callery, L.S. Gan, S.K. Balani, Drug Metab. Dispos. 35 (2007) 1203–1208.
[13] H. Sharp, J. Hollinshead, B.B. Bartholomew, J. Oben, A. Watson, R.J. Nash, Nat.
Prod. Commun. 2 (2007) 817–822.
As we used natural silybin (being an equimolar mixture of two
diastereomers) for the screening we also observed the possibil-
ity of diastereomeric discrimination that was demonstrated with
Novozym 435 in reactions with silybin-23-acetate [16]. However,
no discrimination was observed by HPLC analyses in any positive
reaction. This might also be due to the fact that alcoholysis occurred
exclusively at positions C-5 and C-7, which are distant from the chi-
ral centers at C-10, C-11. Therefore, we could use the same reaction
conditions for the preparation of stereoisomerically pure synthons
from silybins A and B and the corresponding tri- and tetraacetates
3a, 3b, and 4a, 4b, respectively, were isolated for the first time.
[14] P. Morazzoni, E. Bombardelli, Fitoterapia 66 (1995) 3–42.
[15] V. Krˇen, R. Gazˇák, K. Purchartová, P. Marhol, D. Biedermann, P. Sedmera, J. Mol.
Catal. B: Enzym. 61 (2009) 247–251.
4. Conclusions
[16] D. Monti, R. Gazˇák, P. Marhol, D. Biedermann, K. Purchartová, M. Fedrigo, S.
Riva, V. Krˇen, J. Nat. Prod. 73 (2010) 613–619.
[17] R. Gazˇák, P. Marhol, K. Purchartová, D. Monti, D. Biedermann, S. Riva, L. Cvak,
V. Krˇen, Process Biochem. 45 (2010) 1657–1663.
[18] F. Fraschini, G. Dermartini, D. Esposti, Clin. Drug Invest. 22 (2002) 51–65.
[19] B.P. Jacobs, C. Dennehy, G. Ramirez, J. Sapp, V.A. Lawrence, Am. J. Med. 113
(2002) 506–515.
[20] R. Gazˇák, D. Walterová, V. Krˇen, Curr. Med. Chem. 14 (2007) 315–338.
[21] R. Agarwal, C. Agarwal, H. Ichikawa, R.P. Singh, B.B. Aggarwal, Anticancer Res.
26 (2006) 4457–4498.
A high-yielding method for the preparation of silybin tetraac-
etate 4 was developed. This reaction was also tested on the optically
pure silybins, yielding the respective tetraacetates 4a and 4b at a
reasonable yield of ca 70%, whereas no diastereomeric discrim-
ination was observed. Most of the lipases tested exhibited only
limited activity towards peracetylated flavonoid 2; however all
active enzymes gave a similar spectrum of products.
[22] R.P. Singh, R. Agarwal, Mol. Carcinogen 45 (2006) 436–442.
[23] P. Dzˇubák, M. Hajdúch, R. Gazˇák, A. Svobodová, J. Psotová, D. Walterová, P.
Sedmera, V. Krˇen, Bioorg. Med. Chem. 14 (2006) 3793–3810.
[24] P.R. Davis-Searles, Y. Nakanishi, N-Ch. Kim, T.N. Graf, N.H. Oberlies, M.C. Wani,
M.E. Wall, R. Agarwal, D.J. Kroll, Cancer Res. 65 (2005) 4448–4457.
[25] R. Gazˇák, A. Svobodová, J. Psotová, P. Sedmera, V. Prˇikrylová, D. Walterová, V.
Krˇen, Bioorg. Med. Chem. 12 (2004) 5677–5687.
Acknowledgements
This work was supported by ESF COST Chemistry project
CM 0701 and by grants from the Ministry of Education of the