Notes and references
1 (a) E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443;
(b) X. Xue, F. Wang and X. Liu, J. Am. Chem. Soc., 2008,
130, 3244; (c) M. Santra, D. Ryu, A. Chatterjee, S.-K. Ko,
I. Shin and K. H. Ahn, Chem. Commun., 2009, 2115.
2 H. H. Harris, I. J. Pickering and G. N. George, Science, 2003,
301, 1203.
3 Mercury Update: Impact on Fish Advisories, EPA Fact Sheet
EPA- 823-F-01-011; EPA, Office of Water, Washington, DC, 2001.
4 (a) W. Shi and H. Ma, Chem. Commun., 2008, 1856; (b) C. Chen,
R. Wang, L. Guo, N. Fu, H. Dong and Y. Yuan, Org. Lett., 2011,
13, 1162.
Fig. 3 TPM images of H9C2(2-) cells labelled with 3 (8 mM) upon
addition of (a) 0 mM, (b) 2 mM and (c) 10 mM of Hg2+. The TPEF was
collected at 420–520 nm upon excitation at 760 nm with fs pulse.
5 (a) W. Guo, J. Yuan and E. Wang, Chem. Commun., 2009, 3395;
(b) D. Liu, W. Qu, W. Chen, W. Zhang, Z. Wang and X. Jiang,
Anal. Chem., 2010, 82, 9606.
6 C. Zhu, L. Li, F. Fang, J. Chen and Y. Wu, Chem. Lett., 2005,
34, 898.
7 (a) J. M. Thomas, R. Ting and D. M. Perrin, Org. Biomol. Chem.,
2004, 2, 307; (b) T. Li, B. Li, E. Wang and S. Dong, Chem.
Commun., 2009, 3551.
8 (a) A. Ono and H. Togashi, Angew. Chem., Int. Ed., 2004, 43, 4300;
(b) D. S.-H. Chan, H.-M. Lee, C.-M. Che, C.-H. Leung and
D.-L. Ma, Chem. Commun., 2009, 7479; (c) X. Ren and
Q.-H. Xu, Langmuir, 2009, 25, 29.
9 (a) X. Zhang, Y. Xiao and X. Qian, Angew. Chem., Int. Ed., 2008,
47, 8025; (b) A. Jana, J. S. Kim, H. S. Jung and P. K. Bharadwaj,
Chem. Commun., 2009, 4417; (c) M.-H. Ha-Thi, M. Penhoat,
V. Michelet and I. Leray, Org. Biomol. Chem., 2009, 7, 1665.
10 (a) M. Tian, H. Ihmels and K. Benner, Chem. Commun., 2010,
46, 5719; (b) S. Atilgan, T. Ozdemir and E. U. Akkaya, Org. Lett.,
2010, 12, 4792.
11 (a) M.-Y. Chae and A. W. Czarnik, J. Am. Chem. Soc., 1992,
114, 9704; (b) G. Zhang, D. Zhang, S. Yin, X. Yang, Z. Shuai and
D. Zhu, Chem. Commun., 2005, 2161; (c) B. Liu and H. Tian,
Chem. Commun., 2005, 3156; (d) Y. Shiraishi, S. Sumiya and
T. Hirai, Org. Biomol. Chem., 2010, 8, 1310; (e) J.-S. Wu,
I.-C. Hwang, K.-S. Kim and J. S. Kim, Org. Lett., 2007, 9, 907;
(f) M. H. Lee, J.-S. Wu, J. W. Lee, J. H. Jung and J. S. Kim, Org.
Lett., 2007, 9, 2501; (g) W. Shi and H. Ma, Chem. Commun., 2008,
1856; (h) Y.-K. Yang, S.-K. Ko, I. Shin and J. Tae, Org. Biomol.
Chem., 2009, 7, 4590; (i) J. V. Ros-Lis, M. D. Marcos,
R. Martinez-Manez, K. Rurack and J. Soto, Angew. Chem., Int.
Ed., 2005, 44, 4405; (j) W. Jiang and W. Wang, Chem. Commun.,
2009, 3913; (k) D. T. Quang and J. S. Kim, Chem. Rev., 2010,
110, 6280.
12 (a) M. H. Lee, S. W. Lee, S. H. Kim, C. Kang and J. S. Kim, Org.
Lett., 2009, 11, 2101; (b) J. Du, J. Fan, X. Peng, P. Sun, J. Wang,
H. Li and S. Sun, Org. Lett., 2010, 12, 476; (c) S. Ando and
K. Koide, J. Am. Chem. Soc., 2011, 133, 2556.
13 G. S. He, L.-S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev., 2008,
108, 1245.
14 (a) C. Huang, J. Fan, X. Penga, Z. Linb, B. Guob, A. Renc, J. Cuia
and S. Sun, J. Photochem. Photobiol., A, 2008, 199, 144;
(b) C. S. Lim, D. W. Kang, Y. S. Tian, J. H. Han, H. L. Hwang
and B. R. Cho, Chem. Commun., 2010, 46, 2388.
15 R. Koteeswari, P. Ashokkumar, V. T. Ramakrishnan, E. J.
Padma Malar and P. Ramamurthy, Chem. Commun., 2010,
46, 3268.
16 (a) G. L. Long and J. D. Winefordner, Anal. Chem., 1983,
55, 712A; (b) S. Pandey, A. Azam, S. Pandey and
H. M. Chawla, Org. Biomol. Chem., 2009, 7, 269.
17 B. Venkatachalapathy, P. Ramamurthy and V. T. Ramakrishnan,
J. Photochem. Photobiol., A, 1997, 111, 163.
18 The formation of dosimetric product, 1,3,4-oxadiazole has been
confirmed from the independent synthesis and characterized by
complete spectral analysis (see ESIw).
19 (a) R. Kumaran and P. Ramamurthy, J. Phys. Chem. B, 2006,
110, 23783; (b) P. Ashokkumar, V. T. Ramakrishnan and
P. Ramamurthy, Eur. J. Org. Chem., 2009, 5941.
The observed electronic effects and lower fluorescence quantum
yield and shorter lifetime of 4a and 4b (Table S1w) clearly confirm
the operation of PET process in these dosimetric products.
To explore the utility of two-photon excited fluorescence, we
have tested the ability of these molecules to detect Hg2+ by
two-photon excitation. The linear dependence of output fluores-
cence intensity (Iout) on the square of input laser power (mw2)
(Fig. S6w) confirms that this is a two-photon excitation
mechanism. Among all the ADD derivatives, compound 3
shows a relatively higher TPA cross section of 14.6 GM, due to
the increased conjugation from tolyl group. The two-photon
fluorescence excitation spectra (Fig. S7w) of 3 was determined
by the two-photon excited fluorescence (TPEF) method, which
shows a 10 nm blue shift when compared to one-photon spectra,
as observed for many other fluorophores.20 Compound 3 exhibits
a significant TPEF centred at 450 nm. Addition of Hg2+ to 3
leads to a gradual fluorescence intensity decrease (Fig. S8w) as
observed in single photon excitation. Addition of Hg2+ did
not show any significant variation in the TP absorption cross
section; hence the observed quenching in the intensity is only
due to the decreased quantum yield of 3 in the presence of
Hg2+. To demonstrate the potential applications of 3 for TPM
imaging in living cells, H9C2(2-) cells were cultured and
stained with 3 for 15 min, washed with PBS buffer (pH 7.4)
to remove the remaining 3, the treated cells were then incubated
with Hg2+ in culture medium for 15 min. While the cells treated
with only 3 shows bright fluorescence (Fig. 3a), the cells treated
with both 3 and Hg2+ did not show any fluorescence (Fig. 3c).
The fluorescence images clearly indicate that the probe 3 can
detect a minimum of o2 mM of Hg2+ in live H9C2(2-) cells.
We have developed a selective and sensitive Hg2+ probe for
the quantitative detection in aqueous medium. The ability of
this probe to function in unbuffered aqueous solution with
linear and fast fluorescence response will be useful for rapid
and quantitative detection of Hg2+ in environmental samples.
The operation of PET process in the fluorescence signalling
action was confirmed by varying the electron releasing and
withdrawing groups at the PET donor and acceptor moieties.
Even with the lower TPA cross section, we could detect Hg2+
by TPM imaging.
This work was supported by University Grants Commission
(UGC) and Department of Science and Technology (DST),
Government of India. We thank Dr G. Sudhandiran, Dept. of
Biochemistry, University of Madras, for providing cell lines.
R.K. thanks University of Madras for University Research
Fellowship.
20 C. Xu, W. Zipfel, J. B. Shear, R. M. Williams and W. W. Webb,
Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10763.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7695–7697 7697