Journal of the American Chemical Society
COMMUNICATION
allyl exchange of ammonium salts may have broader synthetic
utility as a new strategy for allyl transfer. We are currently
exploring a catalytic enantioselective version of this process
and its application to the synthesis of stereochemically complex
natural produdcts.
(5) (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998,
98, 1689–1708. (b) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res.
2010, 43, 1461–1475. (c) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem.
Sci. 2010, 1, 427–440.
(6) For seminal examples of intramolecular allylic amination with
tertiary amines, see: (a) Grellier, M.; Pfeffer, M.; van Koten, G.
Tetrahedron Lett. 1994, 35, 2877–2880. (b) van der Schaaf, P. A.; Sutter,
J.-P.; Grellier, M.; van Mier, G. P. M.; Spek, A. L.; van Koten, G.; Pfeffer,
M. J. Am. Chem. Soc. 1994, 116, 5134–5144.
’ ASSOCIATED CONTENT
(7) (a) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585–9595.
(b) Amatore, C.; Jutand, A.; Meyer, G.; Atmani, H.; Khalil, F.; Chahdi, F. O.
Organometallics 1998, 17, 2958–2964.
(8) When we resubjected the major diastereomer of the rearranged
product to the reaction conditions, we did not observe any epimeriza-
tion, indicating that the dr in this tandem process reflects the high
diastereoselectivity of the [2,3]-rearrangement via a well-ordered
transition state.
(9) Direct allylic alkylation of the aminoester was ruled out as a
mechanistic possibility for several reasons, including the ligand-inde-
pendent regioselecitivity and diastereoselectivity of product formation
(Table 1) as well as the inability of Cs2CO3 to deprotonate an
aminoester directly (on the basis of pKa values).
(10) Murahashi, S.-I.; Imada, Y. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E.-I., Ed.; Wiley-Interscience:
New York, 2002; pp 1817À1825.
S
Supporting Information. Complete experimental proce-
b
dures and characterization data. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Financial support was provided by the Robert A. Welch
Foundation (Grant I-1748) and the W. W. Caruth, Jr., Endowed
Scholarship.
’ REFERENCES
(1) (a) Stevens, T. S.; Creigton, E. M.; Gordon, A. B.; MacNicol, M.
J. Chem. Soc. 1928, 3193–3197.(b) Markꢀo, I. E. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1991; Vol. 3, pp 913À974. (c) Br€uckner, R. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1991; Vol. 6, pp 873À908. (d) Honda, K.; Inoue, S.; Sato, K. J. Am.
Chem. Soc. 1990, 112, 1999–2001. (e) Arborꢀe, A. P. A.; Cane-Honeysett,
D. J.; Coldham, I.; Middleton, M. L. Synlett 2000, 236–238. (f) Vanecko,
J. A.; Wan, H.; West, F. G. Tetrahedron 2006, 62, 1043–1062. (g)
Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027–1038.
(2) (a) Coldham, I.; Middleton, M. L.; Taylor, P. L. J. Chem. Soc.,
Perkin Trans. 1 1997, 2951–2952. (b) Coldham, I.; Middleton, M. L.;
Taylor, P. L. J. Chem. Soc., Perkin Trans. 1 1998, 2817–2821. (c) Honda,
K.; Tabuchi, M.; Kurokawa, H.; Asami, M.; Inoue, S. J. Chem. Soc., Perkin
Trans. 1 2002, 1387–1396. (d) Workman, J. A.; Garrido, N. P.; Sanc€uon,
J.; Roberts, E.; Wessel, H. P.; Sweeney, J. B. J. Am. Chem. Soc. 2005,
127, 1066–1067. (e) Gawley, R. E.; Moon, K. Org. Lett. 2007, 9
3093–3096.
(3) Lewis acids have been shown to mediate aza-Wittig-type re-
arrangements of aminoesters and aminoamides via the generation of
allylic ammonium ylides and subsequent [2,3]-rearrangement. See: (a)
Murata, Y.; Nakai, T. Chem. Lett. 1990, 2069–2072. (b) Kessar, S. V.;
Singh, P.; Singh, K. N.; Kaul, V. K.; Kumar, G. Tetrahedron Lett. 1995,
36, 8481–8484. (c) Blid, J.; Somfai, P. Tetrahedron Lett. 2003,
44, 3159–3162. (d) Blid, J.; Brandt, P.; Somfai, P. J. Org. Chem. 2004,
69, 3043–3049. (e) Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc.
2005, 127, 9352–9353. (f) Blid, J.; Panknin, O.; Tuzina, P.; Somfai, P.
J. Org. Chem. 2007, 72, 1294–1300. (g) Somfai, P.; Panknin, O. Synlett
2007, 1190–1202.
(4) (a) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem.
1981, 46, 5094–5102. (b) Del Zotto, A.; Baratta, W.; Miani, F.; Verardo,
G.; Rigo, P. Eur. J. Org. Chem. 2000, 3731–3735. (c) Padwa, A.; Beall,
L. S.; Eidell, C. K.; Worsencroft, K. J. J. Org. Chem. 2001, 66, 2414–2421.
(d) Clark, J. S.; Middleton, M. D. Tetrahedron Lett. 2003,
44, 7031–7034. (e) Glaeske, K. W.; Naidu, B. N.; West, F. G. Tetra-
hedron: Asymmetry 2003, 14, 917–920. (f) Zhou, C.-Y.; Yu, W.-Y.; Chan,
P. W. H.; Che, C.-M. J. Org. Chem. 2004, 69, 7072–7082. (g) Roberts, E.;
Sanc€uon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075–2078. (h) Honda,
K.; Shibuya, H.; Yasui, H.; Hoshino, Y.; Inoue, S. Bull. Chem. Soc. Jpn.
2008, 81, 142–147.
12959
dx.doi.org/10.1021/ja204717b |J. Am. Chem. Soc. 2011, 133, 12956–12959