Organic Letters
Letter
Scheme 2. Carbonylative Mizoroki−Heck Reaction Using
(Iodomethyl)cyclopropane 1h
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures and spectroscopic data
AUTHOR INFORMATION
Corresponding Author
■
Notes
Scheme 3. Isomerization of 3a under Photoirradiation
Conditions
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research from the JSPS and MEXT. S.S. acknowledges a
Research Fellowship of the JSPS for Young Scientists.
REFERENCES
■
(1) (a) Wu, X. F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40,
4986. (b) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int.
̈
́
Ed. 2009, 48, 4114. (c) Skoda-Foldes, R.; Kollar, L. Curr. Org. Chem.
A proposed reaction mechanism for the present carbonylative
Mizoroki−Heck reaction is shown in Scheme 4. Initially, alkyl
2002, 6, 1097. (d) Tsuji, J. Palladium Reagents and Catalysis: Innovations
in Organic Synthesis; Wiley: Chichester, 1995. (e) Colquhoun, H. M.;
Thompson, D. T. Twigg, M. V. Carbonylation: Direct Synthesis of
Carbonyl Compounds; Plenum Press, New York, 1991.
Scheme 4. Proposed Reaction Mechanism
(2) For carbonylative Mizoroki−Heck reaction starting from aryl or
vinyl halides, see: (a) Wu, X.−F.; Neumann, H.; Spannenberg, A.;
Schulz, T.; Jiao, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 14596.
(b) Satoh, T.; Itaya, T.; Okuro, K.; Miura, M.; Nomura, M. J. Org. Chem.
1995, 60, 7267. (c) Negishi, E.; Miller, J. A. J. Am. Chem. Soc. 1983, 105,
6761.
(3) For the carbonylation reactions of alkyl halides by using metal−
carbonyl complexes, see: (a) Corey, E. J.; Hegedus, L. S. J. Am. Chem.
Soc. 1969, 91, 1233. (b) Yamashita, M.; Mizushima, K.; Watanabe, Y.;
Mitsudo, T.; Takegami, Y. Chem. Lett. 1977, 1355.
(4) For overviews of the difficulty of metal-catalyzed coupling reactions
́
starting from alkyl halides, see: (a) Cardenas, D. J. Angew. Chem., Int. Ed.
2003, 42, 384. (b) Luh, T.-Y.; Leung, M.-K.; Wong, K.-T. Chem. Rev.
2000, 100, 3187. (c) Urata, H.; Maekawa, H.; Takahashi, S.; Fuchikami,
T. J. Org. Chem. 1991, 56, 4320.
(5) For recent effort on the palladium-catalyzed carbonylation
reactions of alkyl halides, see: Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.;
Beller, M.; Wu, X.−F. ACS Catal. 2014, 4, 2977.
radical A and PdII are generated from 1 and Pd0 via photoinduced
single-electron transfer (SET).6,14,15 Alkyl radical A would be
quickly converted to acyl radical B under the employed
pressurized CO conditions.16 β-Keto radical C was formed by
the addition of acyl radical B to alkene 2.17 DBU would then
abstract hydrogen from the α-position of carbonyl of C to form
radical anion D.18 This is followed by SET from D to PdII species,
which would give product enone 3 and Pd0. In the case of without
the Pd catalyst, we believe the reaction would also include a SET
process with D and 1 to give enone 3 and alkyl radical A for the
formation of a chain-reaction system.19
In summary, we have demonstrated that an intermolecular
carbonylative Mizoroki−Heck reaction using alkyl iodides is
possible via a combined Pd/photoirradiation system using DBU
as a base. In this reaction, we propose a radical-SET combined
mechanism involving the addition of acyl radicals to alkenes and
a consecutive generation of radical anions from the deprotona-
tion caused by DBU. Additional mechanistic investigations as
well as synthetic applications of the carbonylative cross-coupling
reactions of alkyl substrates are now underway in our laboratory.
(6) For Pd/light combined systems for carbonylation of alkyl halides.
See: (a) Fusano, A.; Sumino, S.; Nishitani, S.; Inouye, T.; Morimoto, K.;
Fukuyama, T.; Ryu, I. Chem. - Eur. J. 2012, 18, 9415. (b) Fukuyama, T.;
Nishitani, S.; Inouye, T.; Morimoto, K.; Ryu, I. Org. Lett. 2006, 8, 1383.
Also see earlier work: (c) Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura,
N. J. Chem. Soc., Chem. Commun. 1995, 295. (d) Kondo, T.; Sone, Y.;
Tsuji, Y.; Watanabe, Y. J. Organomet. Chem. 1994, 473, 163. (e) Kondo,
T.; Tsuji, Y.; Watanabe, Y. Tetrahedron Lett. 1988, 29, 3833.
(7) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014,
47, 1563.
(8) Fusano, A.; Fukuyama, T.; Nishitani, S.; Inouye, T.; Ryu, I. Org.
Lett. 2010, 12, 2410.
(9) Sumino, S.; Ui, T.; Ryu, I. Org. Lett. 2013, 15, 3142.
(10) Bloome, K. S.; Alexanian, E. J. J. Am. Chem. Soc. 2010, 132, 12823.
(11) For a review on BTF, see: Maul, J. J.; Ostrowski, P. J.; Ublacker, G.
A.; Linclau, B.; Curran, D. P. Top. Curr. Chem. 1999, 206, 79.
(12) Previous studies reported that Mn2(CO)10 can act as a radical
initiator; see: Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922.
Also see ref 6b.
(13) (a) Newcomb, M. Tetrahedron 1993, 49, 1151. (b) Bowry, V. W.;
Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5699.
C
Org. Lett. XXXX, XXX, XXX−XXX