Journal of the American Chemical Society
ARTICLE
’ ASSOCIATED CONTENT
couplings of amines also require preactivated nucleophiles. See: Li, C.-J.
Acc. Chem. Res. 2009, 42, 335.
S
Supporting Information. Experimental procedures and
(7) For selected applications in total synthesis, see: (a) Lu, Y.;
Krische, M. J. Org. Lett. 2009, 11, 3108. (b) Harsh, P.; O’Doherty,
G. A. Tetrahedron 2009, 65, 5051. (c) Sawant, P.; Maier, M. E.
Tetrahedron 2010, 66, 9738. (d) Han, S. B.; Hassan, A.; Kim, I.-S.;
Krische, M. J. J. Am. Chem. Soc. 2010, 132, 15559.
b
spectral data (1H NMR, 13C NMR, IR, HRMS) for all new
compounds. This material is available free of charge via the
(8) For rifamycin S, see: Isolation: (a) Sensi, P.; Margalith, P.;
Timbal, M. T., II. Farmaco, Ed. Sci. 1959, 14, 146. (b) Sensi, P.; Greco,
A. M.; Ballotta, R. Antibiot. Annu. 1959/1960, 262. Total syntheses: (c)
Nagaoka, H.; Rutsch, W.; Schmid, G.; Iio, H.; Johnson, M. R.; Kishi, Y.
J. Am. Chem. Soc. 1980, 102, 7962. (d) Iio, H.; Nagaoka, H.; Kishi, Y.
J. Am. Chem. Soc. 1980, 102, 7965. (e) Kishi, Y. Pure Appl. Chem. 1981,
53, 1163. (f) Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873.
(9) For swinholide, see: Isolation: (a) Carmely, S.; Kashman, Y.
Tetrahedron Lett. 1985, 26, 511. Total syntheses: (b) Paterson, I.; Smith,
J. D.; Ward, R. A.; Cumming, J. G. J. Am. Chem. Soc. 1994, 116, 2615. (c)
Paterson, I.; Yeung, K.-S.; Ward, R. A.; Cumming, J. G.; Smith, J. D.
J. Am. Chem. Soc. 1994, 116, 9391. (d) Paterson, I.; Cumming, J. G.;
Ward, R. A.; Lamboley, S. Tetrahedron 1995, 51, 9393. (e) Paterson, I.;
Smith, J. D.; Ward, R. A. Tetrahedron 1995, 51, 9413. (f) Paterson, I.;
Ward, R. A.; Smith, J. D.; Cumming, J. G.; Yeung, K.-S. Tetrahedron
1995, 51, 9437. (g) Paterson, I.; Yeung, K.-S.; Ward, R. A.; Smith, J. D.;
Cumming, J. G.; Lamboley, S. Tetrahedron 1995, 51, 9467. (h) Nicolaou,
K. C.; Ajito, K.; Patron, A. P.; Khatuya, H.; Richter, P. K.; Bertinato, P.
J. Am. Chem. Soc. 1996, 118, 3059. (i) Nicolaou, K. C.; Patron, A. P.;
Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R. A.;
Tomaszewski, M. J. Chem.—Eur. J. 1996, 2, 847.
(10) For scytophycins, see: Isolation: (a) Ishibashi, M.; Moore, R. E.;
Paterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem. 1986, 51, 5300. (b)
Moore, R. E.; Paterson, G. M. L.; Mynderse, J. S.; Barchi, J., Jr.; Norton,
T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986, 58, 263. (c)
Carmeli, S.; Moore, R. E.; Paterson, G. M. L. J. Nat. Prod. 1990, 53, 1533.
(d) Jung, J. H.; Moore, R. E.; Paterson, G. M. L. Phytochemistry 1991,
30, 3615. Total syntheses: (e) Paterson, I.; Watson, C.; Yeung, K.-S.;
Wallace, P. A.; Ward, R. A. J. Org. Chem. 1997, 62, 452. (f) Paterson, I.;
Yeung, K.-S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998,
54, 11935. (g) Paterson, I.; Watson, C.; Yeung, K.-S.; Ward, R. A.;
Wallace, P. A. Tetrahedron 1998, 54, 11955. (h) Nakamura, R.; Tanino,
K.; Miyashita, M. Org. Lett. 2003, 5, 3579. (i) Nakamura, R.; Tanino, K.;
Miyashita, M. Org. Lett. 2003, 5, 3583.
(11) For saliniketals A and B, see: Isolation: (a) Williams, P. G.;
Asolkar, R. N.; Kondratyuk, T.; Pezzuto, J. M.; Jensen, P. R.; Fenical, W.
J. Nat. Prod. 2007, 70, 83. Total syntheses: (b) Paterson, I.; Razzak, M.;
Anderson, E. A. Org. Lett. 2008, 10, 3295. (c) Liu, J.; De Brabander, J. K.
J. Am. Chem. Soc. 2009, 131, 12562. (d) Yadav, J. S.; Hossain, Sk. S.;
Madhu, M.; Mohapatra, D. K. J. Org. Chem. 2009, 74, 8822.
(12) For (À)-reidispongiolide A, see: Isolation: (a) D’Auria, M. V.;
Gomez-Paloma, L.; Minale, L.; Zampella, A.; Verbist, J.-F.; Roussakis,
C.; Dibitus, C.; Patissou, J. Tetrahedron 1994, 50, 4829. Total synthesis:
(b) Paterson, I.; Ashton, K.; Britton, R.; Cecere, G.; Chouraqui, G.;
Florence, G. J.; Stafford, J. Angew. Chem., Int. Ed. 2007, 46, 6167.
(13) For selected reviews of enantioselective carbonyl allylation, see:
(a) Yamamoto, Y.;Asao, N. Chem. Rev. 1993, 93, 2207. (b) Ramachandran,
P. V. Aldrichimica Acta 2002, 35, 23. (c) Kennedy, J. W. J.; Hall, D. G.
Angew. Chem., Int. Ed. 2003, 42, 4732. (d) Denmark, S. E.; Fu, J. Chem. Rev.
2003, 103, 2763. (e) Yu, C.-M.; Youn, J.; Jung, H.-K. Bull. Korean Chem.
Soc. 2006, 27, 463. (f)Marek, I.; Sklute, G. Chem. Commun. 2007, 1683. (g)
Hall, D. G. Synlett 2007, 1644.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
The Robert A. Welch Foundation (F-0038) and NIH NIGMS
(R01-GM093905) are acknowledged for partial support of this
research.
’ REFERENCES
(1) For selected reviews of synthetic methods for polyketide
construction, see: (a) Paterson, I.; Doughty, V. A.; Florence, G.; Gerlach,
K.; McLeod, M. D.; Scott, J. P.; Trieselmann, T. ACS Symp. Ser. 2001,
783, 195. (b) Koskinen, A. M. P.; Karisalmi, K. Chem. Soc. Rev. 2005,
34, 677. (c) Yeung, K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
(d) Schetter, B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006, 45, 7506.
(e) Morris, J. C.; Nicholas, G. M.; Phillips, A. J. Nat. Prod. Rep 2007,
24, 87. (f) Paterson, I. Total Synthesis of Polyketides Using Asymmetric
Aldol Reactions. In Asymmetric Synthesis, 2nd ed.; Christmann, M.,
Br€ase, S., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp 293À298.
(g) Paterson, I.; Findlay, A. D. Aust. J. Chem. 2009, 62, 624.
(2) Progress toward rapid generation of polyketide substructures via
cascade or “domino” reactions has been made [see: (a) Albert, B. J.;
Yamamoto, H. Angew. Chem., Int. Ed. 2010, 49, 2747. (b) Harrison, T. J.;
Ho, S.; Leighton, J. L. J. Am. Chem. Soc. 2011, 133, 7308. ] However, the
transformations developed to date do not transform achiral or chiral
racemic reactants to chiral products
(3) For recent reviews of CÀC bond-forming transfer hydrogenation, see:
(a) Patman, R. L.; Bower, J. F.; Kim, I. S.; Krische, M. J. Aldrichimica Acta
2008, 41, 95. (b) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M. J.
Angew. Chem., Int. Ed. 2009, 48, 34. (c) Bower, J. F.; Krische, M. J. Top.
Organomet. Chem. 2011, 43, 107.
(4) For selected examples of ruthenium-catalyzed alcohol-unsatu-
rated CÀC couplings of dienes, alkynes, and allenes, respectively, see:
(a) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 6338. (b) Patman, R. L.; Chaulagain, M. R.; Williams, V. M.;
Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066. (c) Zbieg, J. R.;
McInturff, E. L.; Leung, J. C.; Krische, M. J. J. Am. Chem. Soc. 2011,
133, 1141.
(5) For selected examples of enantioselective iridium-catalyzed
allylation and crotylation from the alcohol oxidation level, see: (a)
Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340.
(b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 14891. (c) Kim, I. S.; Han, S.-B.; Krische, M. J. J. Am. Chem. Soc.
2009, 131, 2514. (d) Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.;
Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 5018. (e) Gao, X.;
Townsend, I. A.; Krische, M. J. J. Org. Chem. 2011, 76, 2350.
(6) In related “hydrogen autotransfer” or “hydrogen borrowing”
processes, alcohol dehydrogenation and nucleophile generation occur
independently. Such processes deliver products of formal alcohol
substitution rather than carbonyl addition. For selected reviews, see:
(a) Guillena, G.; Ramꢁon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007,
46, 2358. (b) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv.
Synth. Catal. 2007, 349, 1555. (c) Nixon, T. D.; Whittlesey, M. K.;
Williams, J. M. J. Dalton Trans. 2009, 753. (d) Dobereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681. (e) Guillena, G.; Ramꢁon,
D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. (f) Related dehydrogenative
(14) For selected reviews of carbonyl allylation based on the
reductive coupling of metallo-π-allyls derived from allylic alcohols,
ethers, or carboxylates, see: (a) Masuyama, Y. Palladium-Catalyzed
Carbonyl Allylation via π-Allylpalladium Complexes. In Advances in
MetalÀOrganic Chemistry; Liebeskind, L. S., Ed.; JAI Press, Greenwich,
CT, 1994; Vol. 3, pp 255À303. (b) Tamaru, Y. Palladium-Catalyzed
Reactions of Allyl and Related Derivatives with Organoelectrophiles. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E.-i., de Meijere, A., Eds.; Wiley: New York, 2002; Vol. 2, pp 1917À1943.
12799
dx.doi.org/10.1021/ja204570w |J. Am. Chem. Soc. 2011, 133, 12795–12800